• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Phyto-cover of landfill sites: a sustainable alternative to conventional clay cover

    Author(s)
    Ghadiri, H
    Benaud, P
    Greenway, M
    Yuen, S
    Zhu, G
    Griffith University Author(s)
    Ghadiri, Hossein
    Greenway, Margaret
    Benaud, Pia E.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    A large scale field research was carried out in five active landfill locations across Australia to investigate the viability and sustainability of a new phyto-capping system of landfill final cover as a replacement for the conventional clay cover which is expensive to build and maintain. Phytocovers consists of a deep layer of lightly compacted soil on top of the waste over which native plant species of grass, shrub and tree are grown to uptake and transpire the infiltrating water thus preventing such water getting into the underlying waste. Trees on all sites with adequate rain showed rapid growth, providing near 100% ...
    View more >
    A large scale field research was carried out in five active landfill locations across Australia to investigate the viability and sustainability of a new phyto-capping system of landfill final cover as a replacement for the conventional clay cover which is expensive to build and maintain. Phytocovers consists of a deep layer of lightly compacted soil on top of the waste over which native plant species of grass, shrub and tree are grown to uptake and transpire the infiltrating water thus preventing such water getting into the underlying waste. Trees on all sites with adequate rain showed rapid growth, providing near 100% coverage of the plots in the last round of field studies. Although the soil layer was initially compacted to 85% of maximum proctor test, plant root penetration on most sites remained unaffected, extending to the bottom of the soil profile within 3 years of planting, thus removing and transpiring water from the entire soil profile. Within the study period there were a few notable changes in the soil characteristics, namely a decrease in pH and soil phosphorus. It was hypothesised that the declining soil pH could be attributable to reactions between landfill gas and soil moisture. However, methane gas emission from the underlying wastes did not appear have any adverse effect on the plant growth and survival on any of the study sites. Overall results suggest that phytocover is capable of reducing or eliminating seepage into the waste by transpiring back into atmosphere most of the infiltrating water into soil profile. The project is continuing but the results so far suggest that phytocover can successfully replace conventional clay cover under most Australian soil and climatic conditions, from Mediterranean climatic regions to tropics.
    View less >
    Conference Title
    5th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2011
    DOI
    https://doi.org/10.1109/icbbe.2011.5781491
    Note
    Notice of Retraction: After careful and considered review of the content of this paper by a duly constituted expert committee, this paper has been found to be in violation of IEEE's Publication Principles. We hereby retract the content of this paper.
    Subject
    Environmental Technologies
    Publication URI
    http://hdl.handle.net/10072/46305
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander