Exploiting Probabilistic Knowledge under Uncertain Sensing for Efficient Robot Behaviour

View/ Open
Author(s)
Hanheide, M.
Gretton, C.
Dearden, R.
Hawes, N.
Wyatt, J.
Pronobis, A.
Aydemir, A.
G¨obelbecker, M.
Zender, H.
Griffith University Author(s)
Year published
2011
Metadata
Show full item recordAbstract
Robots must perform tasks efficiently and reliably while acting under uncertainty. One way to achieve efficiency is to give the robot commonsense knowledge about the structure of the world. Reliable robot behaviour can be achieved by modelling the uncertainty in the world probabilistically. We present a robot system that combines these two approaches and demonstrate the improvements in efficiency and reliability that result. Our first contribution is a probabilistic relational model integrating common-sense knowledge about the world in general, with observations of a particular environment. Our second contribution ...
View more >Robots must perform tasks efficiently and reliably while acting under uncertainty. One way to achieve efficiency is to give the robot commonsense knowledge about the structure of the world. Reliable robot behaviour can be achieved by modelling the uncertainty in the world probabilistically. We present a robot system that combines these two approaches and demonstrate the improvements in efficiency and reliability that result. Our first contribution is a probabilistic relational model integrating common-sense knowledge about the world in general, with observations of a particular environment. Our second contribution is a continual planning system which is able to plan in the large problems posed by that model, by automatically switching between decision-theoretic and classical procedures. We evaluate our system on object search tasks in two different real-world indoor environments. By reasoning about the trade-offs between possible courses of action with different informational effects, and exploiting the cues and general structures of those environments, our robot is able to consistently demonstrate efficient and reliable goal-directed behaviour.
View less >
View more >Robots must perform tasks efficiently and reliably while acting under uncertainty. One way to achieve efficiency is to give the robot commonsense knowledge about the structure of the world. Reliable robot behaviour can be achieved by modelling the uncertainty in the world probabilistically. We present a robot system that combines these two approaches and demonstrate the improvements in efficiency and reliability that result. Our first contribution is a probabilistic relational model integrating common-sense knowledge about the world in general, with observations of a particular environment. Our second contribution is a continual planning system which is able to plan in the large problems posed by that model, by automatically switching between decision-theoretic and classical procedures. We evaluate our system on object search tasks in two different real-world indoor environments. By reasoning about the trade-offs between possible courses of action with different informational effects, and exploiting the cues and general structures of those environments, our robot is able to consistently demonstrate efficient and reliable goal-directed behaviour.
View less >
Conference Title
Twenty-Second International Joint Conference on Artificial Intelligence Proceedings
Publisher URI
Copyright Statement
© 2011 International Joint Conference on Artificial Intelligence. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the Conference's website for access to the definitive, published version.
Subject
Artificial Intelligence and Image Processing not elsewhere classified