• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Modelling the Influence of Filter Structure on Efficiency and Pressure Drop in Knitted Filters

    Thumbnail
    View/Open
    77949_1.pdf (284.7Kb)
    Author(s)
    Mullins, BJ
    King, AJC
    Braddock, RD
    Griffith University Author(s)
    Braddock, Roger D.
    Mullins, Benjamin J.
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    Fibrous filters are used extensively in a range of applications, including process engineering, automotive filtration and for worker (respiratory) protection. These filters are usually a felted, nonwoven structure of randomly arranged fibres. However, a special class of such filters exists - knitted filters. These filters are advantageous for many applications, as their knitted structure imparts significant mechanical strength. The structure of the fibres in such filters can be described by the classical strophoid equation. There has been relatively little study on the pressure drop and efficiency of such filters. This work ...
    View more >
    Fibrous filters are used extensively in a range of applications, including process engineering, automotive filtration and for worker (respiratory) protection. These filters are usually a felted, nonwoven structure of randomly arranged fibres. However, a special class of such filters exists - knitted filters. These filters are advantageous for many applications, as their knitted structure imparts significant mechanical strength. The structure of the fibres in such filters can be described by the classical strophoid equation. There has been relatively little study on the pressure drop and efficiency of such filters. This work has developed a geometric model of a knitted metal filter, by applying the strophoid equation. The geometric model thus allows a range of geometries to be generated, based on the strophoid variables, and also fibre/wire diameter, then the knits layered at a given bulk porosity (packing density), to create a geometry of desired properties. The geometric model outputs can then be coupled with a novel computational fluid dynamics (CFD) model for fibrous filtration (developed by the authors). This then allows, the relationship between the aforementioned structural properties and critical filter properties such as particle capture efficiency and pressure drop to be investigated. This work examined the pressure drop and efficiency of a knitted filter geometry at 3 different packing densities. The CFD results were compared to classical single fibre efficiency theory for conventional fibrous filters. The CFD results showed increased capture efficiency and pressure drop compared to fibrous filter theory.
    View less >
    Conference Title
    19TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2011)
    Publisher URI
    http://www.mssanz.org.au/modsim2011/index.htm
    Copyright Statement
    © 2011 Modellling & Simulation Society of Australia & New Zealand. The attached file is reproduced here in accordance with the copyright policy of the publisher. For information about this conference please refer to the conference’s website or contact the authors.
    Subject
    Mechanical Engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/46532
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander