• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Hardware Prototyping Of Iris Recognition System: A Neural Network Approach

    Author(s)
    Chiao Mei, Florence Choong
    Reaz, Mamun Ibne
    Leng, Tan
    Yasin, Faisal Mohd
    Griffith University Author(s)
    Mohd-Yasin, Faisal
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Iris recognition, a relatively new biometric technology, possesses great advantages, such as variability, stability and security, making it to be the most promising method for high security environments. A novel hardware-based iris recognition system is proposed in this paper, which consists of two main parts: image processing and recognition. Image processing involves histogram stress, thresholding, cropping, transformation and normalizing that is performed by using Matlab. Multilayer perceptron architecture with backpropagation algorithm is employed to recognize iris pattern. The entire architecture was modeled using VHDL, ...
    View more >
    Iris recognition, a relatively new biometric technology, possesses great advantages, such as variability, stability and security, making it to be the most promising method for high security environments. A novel hardware-based iris recognition system is proposed in this paper, which consists of two main parts: image processing and recognition. Image processing involves histogram stress, thresholding, cropping, transformation and normalizing that is performed by using Matlab. Multilayer perceptron architecture with backpropagation algorithm is employed to recognize iris pattern. The entire architecture was modeled using VHDL, a hardware description language. The approach obtained a recognition accuracy of 98.5%.The design was successfully implemented, tested and validated on Altera Mercury EP1 Ml 20F484C5 FPGA utilizing 4157 logic cells and achieved a maximum frequency of 121.87 MHz.This novel and efficient method in hardware, based on FPGA technology showed improved performance over existing approaches for iris recognition.
    View less >
    Journal Title
    Jurnal Kejuruteraan
    Volume
    19
    Publisher URI
    https://www.ukm.my/jkukm/volume-19-2007/
    Subject
    Neurocognitive Patterns and Neural Networks
    Publication URI
    http://hdl.handle.net/10072/46681
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander