• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Power Quality Disturbance Detection Using Artificial Intelligence: A Hardware Approach

    Thumbnail
    View/Open
    72943_1.pdf (135.5Kb)
    Author(s)
    Choong, F
    Reaz, MBI
    Mohd-Yasin, F
    Griffith University Author(s)
    Mohd-Yasin, Faisal
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Identification and classification of voltage and current disturbances in power systems is an important task in power system monitoring and protection. Most power quality disturbances are non-stationary and transitory and the detection and classification have proved to be very demanding. New intelligent system technologies using wavelet transform, expert systems and artificial neural networks provide some unique advantages regarding fault analysis. This paper presents new approach aimed at automating the analysis of power quality disturbances including sag, swell, transient, fluctuation, interruption and normal waveform. The ...
    View more >
    Identification and classification of voltage and current disturbances in power systems is an important task in power system monitoring and protection. Most power quality disturbances are non-stationary and transitory and the detection and classification have proved to be very demanding. New intelligent system technologies using wavelet transform, expert systems and artificial neural networks provide some unique advantages regarding fault analysis. This paper presents new approach aimed at automating the analysis of power quality disturbances including sag, swell, transient, fluctuation, interruption and normal waveform. The approach focuses on the application of discrete wavelet transform technique to extract features from disturbance waveforms and their classification using a powerful combination of neural network and fuzzy logic. The system is modelled using VHDL followed by extensive testing and simulation to verify the correct functionality of the system. Then, the design is synthesized to APEX EP20K200EBC652-1X FPGA, tested and validated. Comparisons, verification and analysis made from the results obtained from the application of this system on software-generated and utility sampled disturbance signals validate the utility of this approach and achieved a classification accuracy of 98.17%.
    View less >
    Conference Title
    Proceedings - 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005
    Volume
    2005
    DOI
    https://doi.org/10.1109/IPDPS.2005.348
    Copyright Statement
    © 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Subject
    Electrical and Electronic Engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/46702
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander