Expert System for Power Quality Disturbance Classifier

View/ Open
Author(s)
Reaz, Mamun Bin Ibne
Choong, Florence
Sulaiman, Mohd Shahiman
Mohd-Yasin, Faisal
Kamada, Masaru
Griffith University Author(s)
Year published
2007
Metadata
Show full item recordAbstract
Identification and classification of voltage and current disturbances in power systems are important tasks in the monitoring and protection of power system. Most power quality disturbances are non-stationary and transitory and the detection and classification have proved to be very demanding. The concept of discrete wavelet transform for feature extraction of power disturbance signal combined with artificial neural network and fuzzy logic incorporated as a powerful tool for detecting and classifying power quality problems. This paper employes a different type of univariate randomly optimized neural network combined with ...
View more >Identification and classification of voltage and current disturbances in power systems are important tasks in the monitoring and protection of power system. Most power quality disturbances are non-stationary and transitory and the detection and classification have proved to be very demanding. The concept of discrete wavelet transform for feature extraction of power disturbance signal combined with artificial neural network and fuzzy logic incorporated as a powerful tool for detecting and classifying power quality problems. This paper employes a different type of univariate randomly optimized neural network combined with discrete wavelet transform and fuzzy logic to have a better power quality disturbance classification accuracy. The disturbances of interest include sag, swell, transient, fluctuation, and interruption. The system is modeled using VHSIC hardware description language (VHDL), a hardware description language, followed by extensive testing and simulation to verify the functionality of the system that allows efficient hardware implementation of the same. This proposed method classifies, and achieves 98.19% classification accuracy for the application of this system on software-generated signals and utility sampled disturbance events.
View less >
View more >Identification and classification of voltage and current disturbances in power systems are important tasks in the monitoring and protection of power system. Most power quality disturbances are non-stationary and transitory and the detection and classification have proved to be very demanding. The concept of discrete wavelet transform for feature extraction of power disturbance signal combined with artificial neural network and fuzzy logic incorporated as a powerful tool for detecting and classifying power quality problems. This paper employes a different type of univariate randomly optimized neural network combined with discrete wavelet transform and fuzzy logic to have a better power quality disturbance classification accuracy. The disturbances of interest include sag, swell, transient, fluctuation, and interruption. The system is modeled using VHSIC hardware description language (VHDL), a hardware description language, followed by extensive testing and simulation to verify the functionality of the system that allows efficient hardware implementation of the same. This proposed method classifies, and achieves 98.19% classification accuracy for the application of this system on software-generated signals and utility sampled disturbance events.
View less >
Journal Title
IEEE Transactions on Power Delivery
Volume
22
Issue
3
Copyright Statement
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Subject
Electrical and Electronic Engineering not elsewhere classified
Electrical and Electronic Engineering