• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Influence of bubble plumes on evaporation from non-stratified waters

    Thumbnail
    View/Open
    78054_1.pdf (502.1Kb)
    Author(s)
    Helfer, Fernanda
    Lemckert, Charles
    Zhang, Hong
    Griffith University Author(s)
    Zhang, Hong
    Helfer, Fernanda
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Air-bubble plumes have been used primarily for water quality management through destratification; however, their impact on evaporation rates is yet to be formally quantified. In this paper, the influence of these systems on evaporation from water bodies is investigated. Evaporation, temperature, humidity and wind data were collected and analysed from a laboratory experiment for various air-flow rates injected into non-stratified water. It was found that aeration by air-bubble plumes increases evaporation in their direct vicinity. The factors involved in this increase were identified, and an empirical formula to quantify ...
    View more >
    Air-bubble plumes have been used primarily for water quality management through destratification; however, their impact on evaporation rates is yet to be formally quantified. In this paper, the influence of these systems on evaporation from water bodies is investigated. Evaporation, temperature, humidity and wind data were collected and analysed from a laboratory experiment for various air-flow rates injected into non-stratified water. It was found that aeration by air-bubble plumes increases evaporation in their direct vicinity. The factors involved in this increase were identified, and an empirical formula to quantify the loss of water under conditions of aeration was derived. To examine their overall impact on reservoirs, a temperate reservoir in Australia was taken as example for the application of this function. While laboratory data showed that aeration plays an important role in increasing loss of water from small non-stratified water bodies (such as water tanks) for real reservoirs, the effects of aeration on evaporation increase are insignificant. This is because the area of the plume to that of the reservoir is significantly less in real reservoirs than in water tanks. Additionally, due to thermal stratification conditions in real reservoirs, aeration by bubble plumes actually causes a slight reduction in evaporation due to reduction in reservoir surface temperatures as a result of the mixing process. Therefore, the net effect of air-bubble plume aeration on real reservoirs is a reduction in evaporation. However, this quantity was shown to be minor, and does not warrant the use of these systems for the sole purpose of reducing evaporation.
    View less >
    Journal Title
    Journal of Hydrology
    Volume
    438-439
    DOI
    https://doi.org/10.1016/j.jhydrol.2012.03.020
    Copyright Statement
    © 2012 Elsevier B.V.. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Water resources engineering
    Publication URI
    http://hdl.handle.net/10072/46754
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander