• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    Author(s)
    Handel, S.
    Marchant, A.
    Wiles, T.
    Hopkins, S.
    Cornish, S.
    Griffith University Author(s)
    Haendel, Sylvi
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of 85Rb and 87Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum. To maintain excellent optical access to the region surrounding the surface, magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber ...
    View more >
    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of 85Rb and 87Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum. To maintain excellent optical access to the region surrounding the surface, magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally, we demonstrate the loading of a hybrid optical-magnetic trap with 87Rb and the creation of Bose-Einstein condensates via forced evaporative cooling close to the dielectric surface.
    View less >
    Journal Title
    Review of Scientific Instruments
    Volume
    83
    DOI
    https://doi.org/10.1063/1.3676161
    Subject
    Atomic and Molecular Physics
    Physical Sciences
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/46881
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander