• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Ultimate limits to quantum metrology and the meaning of the Heisenberg limit

    Thumbnail
    View/Open
    78576_1.pdf (250.6Kb)
    Author(s)
    Zwierz, Marcin
    A. Pe ́rez-Delgado, Carlos
    Kok, Pieter
    Griffith University Author(s)
    Zwierz, Marcin
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    For the last 20 years, the question of what are the fundamental capabilities of quantum precision measurements has sparked a lively debate throughout the scientific community. Typically, the ultimate limits in quantum metrology are associated with the notion of the Heisenberg limit expressed in terms of the physical resources used in the measurement procedure. Over the years, a variety of different physical resources were introduced, leading to a confusion about the meaning of the Heisenberg limit. Here, we review the mainstream definitions of the relevant resources and introduce the universal resource count, that is, the ...
    View more >
    For the last 20 years, the question of what are the fundamental capabilities of quantum precision measurements has sparked a lively debate throughout the scientific community. Typically, the ultimate limits in quantum metrology are associated with the notion of the Heisenberg limit expressed in terms of the physical resources used in the measurement procedure. Over the years, a variety of different physical resources were introduced, leading to a confusion about the meaning of the Heisenberg limit. Here, we review the mainstream definitions of the relevant resources and introduce the universal resource count, that is, the expectation value of the generator (above its ground state) of translations in the parameter we wish to estimate, that applies to all measurement strategies. This leads to the ultimate formulation of the Heisenberg limit for quantum metrology. We prove that this limit holds for the generators of translations with an upper-bounded spectrum.
    View less >
    Journal Title
    Physical Review A
    Volume
    85
    Issue
    4
    DOI
    https://doi.org/10.1103/PhysRevA.85.042112
    Copyright Statement
    © 2012 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Quantum Information, Computation and Communication
    Mathematical Sciences
    Physical Sciences
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/46991
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander