• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Complexity of Conditional Planning under Partial Observability and Infinite Executions

    Author(s)
    Rintanen, Jussi
    Griffith University Author(s)
    Rintanen, Jussi
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The computational properties of many classes of conditional and contingent planning are well known. The main division in the field is between probabilistic planning (typically infinite or unbounded executions, reward rather than goal-based, and focus on expected costs or rewards) and non-probabilistic planning (ignoring probabilities, focus on plans that reach goal states.) In this work, we address the middle ground between these problems: planning with infinite executions and designated goal states. We address {/em worst case} rather than expected costs measures for the problem we consider. We analyze the structure of the ...
    View more >
    The computational properties of many classes of conditional and contingent planning are well known. The main division in the field is between probabilistic planning (typically infinite or unbounded executions, reward rather than goal-based, and focus on expected costs or rewards) and non-probabilistic planning (ignoring probabilities, focus on plans that reach goal states.) In this work, we address the middle ground between these problems: planning with infinite executions and designated goal states. We address {/em worst case} rather than expected costs measures for the problem we consider. We analyze the structure of the plans for two possible goal-based specifications such plans may have to satisfy, maintaining a goal property indefinitely as well as visiting a goal state infinitely often, and establish their complexity under different observability assumptions.
    View less >
    Conference Title
    Frontiers in Artificial Intelligence and Applications: Proceedings of the 20th European Conference on Artificial Intelligence ECAI 2012
    Publisher URI
    http://www2.lirmm.fr/ecai2012/
    DOI
    https://doi.org/10.3233/978-1-61499-098-7-678
    Subject
    Adaptive Agents and Intelligent Robotics
    Publication URI
    http://hdl.handle.net/10072/47174
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander