Structure, reactivity, photoactivity and stability of Ti–O based materials: a theoretical comparison

View/ Open
Author(s)
Wang, Yun
Sun, Tao
Yang, Dongjiang
Liu, Hongwei
Zhang, Haimin
Yao, Xiangdong
Zhao, Huijun
Year published
2012
Metadata
Show full item recordAbstract
Ti-O based materials have attracted great attention recently for their potential applications in clean energy generation and environment remediation. To screen Ti-O based materials for specific applications, the atomic-level understanding of the subtle discrepancy of their properties is of paramount importance. In this regard, the density functional theory computations have been performed to systematically compare the physicochemical properties of three selected Ti-O based materials: anatase titanium dioxides, sodium trititanates and sodium hexatitanates. Due to their structure discrepancy, sodium trititanates show the highest ...
View more >Ti-O based materials have attracted great attention recently for their potential applications in clean energy generation and environment remediation. To screen Ti-O based materials for specific applications, the atomic-level understanding of the subtle discrepancy of their properties is of paramount importance. In this regard, the density functional theory computations have been performed to systematically compare the physicochemical properties of three selected Ti-O based materials: anatase titanium dioxides, sodium trititanates and sodium hexatitanates. Due to their structure discrepancy, sodium trititanates show the highest chemical reactivity. However, titanium dioxides are found to be the most photoactive materials. The reactivity and photoactivity of sodium hexatitanates fall between those of titanium dioxide and sodium trititanates. In the meantime, our energetic analysis also confirms that the thermal stabilities of Ti O based materials are strongly dependent on the acid-base conditions. Titanium dioxides are preferred under acidic conditions, while titanates are more stable in basic solutions.
View less >
View more >Ti-O based materials have attracted great attention recently for their potential applications in clean energy generation and environment remediation. To screen Ti-O based materials for specific applications, the atomic-level understanding of the subtle discrepancy of their properties is of paramount importance. In this regard, the density functional theory computations have been performed to systematically compare the physicochemical properties of three selected Ti-O based materials: anatase titanium dioxides, sodium trititanates and sodium hexatitanates. Due to their structure discrepancy, sodium trititanates show the highest chemical reactivity. However, titanium dioxides are found to be the most photoactive materials. The reactivity and photoactivity of sodium hexatitanates fall between those of titanium dioxide and sodium trititanates. In the meantime, our energetic analysis also confirms that the thermal stabilities of Ti O based materials are strongly dependent on the acid-base conditions. Titanium dioxides are preferred under acidic conditions, while titanates are more stable in basic solutions.
View less >
Journal Title
Physical Chemistry Chemical Physics
Volume
14
Issue
7
Copyright Statement
© 2012 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Physical sciences
Chemical sciences
Engineering