• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A gene selection algorithm using Bayesian classification approach

    Author(s)
    Sharma, A
    Paliwal, KK
    Griffith University Author(s)
    Paliwal, Kuldip K.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    In this study, we propose a new feature (or gene) selection algorithm using Bayes classification approach. The algorithm can find gene subset crucial for cancer classification problem. Problem statement: Gene identification plays important role in human cancer classification problem. Several feature selection algorithms have been proposed for analyzing and understanding influential genes using gene expression profiles. Approach: The feature selection algorithms aim to explore genes that are crucial for accurate cancer classification and also endure biological significance. However, the performance of the algorithms is ...
    View more >
    In this study, we propose a new feature (or gene) selection algorithm using Bayes classification approach. The algorithm can find gene subset crucial for cancer classification problem. Problem statement: Gene identification plays important role in human cancer classification problem. Several feature selection algorithms have been proposed for analyzing and understanding influential genes using gene expression profiles. Approach: The feature selection algorithms aim to explore genes that are crucial for accurate cancer classification and also endure biological significance. However, the performance of the algorithms is still limited. In this study, we propose a feature selection algorithm using Bayesian classification approach. Results: This approach gives promising results on gene expression datasets and compares favorably with respect to several other existing techniques. Conclusion: The proposed gene selection algorithm using Bayes classification approach is shown to find important
    View less >
    Journal Title
    American Journal of Applied Sciences
    Volume
    9
    Issue
    1
    Publisher URI
    https://thescipub.com/abstract/ajassp.2012.127.131
    Subject
    Signal processing
    Publication URI
    http://hdl.handle.net/10072/47190
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander