Show simple item record

dc.contributor.authorWang, Junhuen_US
dc.contributor.authorYu, Jeffreyen_US
dc.contributor.authorPang, Chaoyien_US
dc.contributor.authorLiu, Chengfeien_US
dc.date.accessioned2017-04-24T11:39:36Z
dc.date.available2017-04-24T11:39:36Z
dc.date.issued2012en_US
dc.date.modified2013-06-04T03:18:05Z
dc.identifier.issn00015903en_US
dc.identifier.doi10.1007/s00236-012-0155-1en_US
dc.identifier.urihttp://hdl.handle.net/10072/47421
dc.description.abstractTree patterns represent important fragments of XPath. In this paper, we show that some classes C of tree patterns exhibit such a property that, given a finite number of compatible tree patterns P1, . . . , Pn ? C, there exists another pattern P such that P1, . . . , Pn are all contained in P, and for any tree pattern Q ? C, P1, . . . , Pn are all contained in Q if and only if P is contained in Q.We experimentally demonstrate that the pattern P is usually much smaller than P1, . . . , Pn combined together. Using the existence of P above, we show that testing whether a tree pattern, P, is contained in another, Q ? C, under an acyclic schema graph G, can be reduced to testing whether PG, a transformed version of P, is contained in Q without any schema graph, provided that the distinguished node of P is not labeled *.We then show that, under G, the maximal contained rewriting (MCR) of a tree pattern Q using a view V can be found by finding the MCR of Q using VG without G, when there are no *-nodes on the distinguished path of V and no *-nodes in Q.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_US
dc.languageEnglishen_US
dc.language.isoen_US
dc.publisherSpringeren_US
dc.publisher.placeGermanyen_US
dc.relation.ispartofstudentpublicationNen_US
dc.relation.ispartofpagefrom173en_US
dc.relation.ispartofpageto202en_US
dc.relation.ispartofissue3en_US
dc.relation.ispartofjournalActa Informaticaen_US
dc.relation.ispartofvolume49en_US
dc.rights.retentionYen_US
dc.subject.fieldofresearchDatabase Managementen_US
dc.subject.fieldofresearchcode080604en_US
dc.titleLeast common container of tree pattern queries and its applicationsen_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
gro.facultyGriffith Sciences, School of Information and Communication Technologyen_US
gro.date.issued2012
gro.hasfulltextNo Full Text


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record