• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • In-situ diffraction techniques for studying hydrogen storage materials under high hydrogen pressure

    Author(s)
    Gray, E MacA
    Webb, CJ
    Griffith University Author(s)
    Webb, Jim J.
    Gray, Evan M.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Diffraction-based methods offer unique advantages for elucidating the pathways by which materials absorb and desorb hydrogen, especially when a phase change or the formation of new compounds is involved. In this case, the hydriding reaction may be followed via the changing crystallography of the phases involved in response to a change in temperature or hydrogen pressure. By using a fast diffractometer, the reaction kinetics may also be correlated to environmental conditions and the degree of completion of the reaction. In this paper we consider and model quantitatively the essential elements of a successful in-situ diffraction ...
    View more >
    Diffraction-based methods offer unique advantages for elucidating the pathways by which materials absorb and desorb hydrogen, especially when a phase change or the formation of new compounds is involved. In this case, the hydriding reaction may be followed via the changing crystallography of the phases involved in response to a change in temperature or hydrogen pressure. By using a fast diffractometer, the reaction kinetics may also be correlated to environmental conditions and the degree of completion of the reaction. In this paper we consider and model quantitatively the essential elements of a successful in-situ diffraction experiment with neutrons or X-rays under hydrogen pressures up to several kilobars: a gas manifold to accurately measure hydrogen uptake; a pressure cell designed for maximum detected intensity; means to exclude scattering arising in the cell as much as possible; methodology to correct for attenuation and subtract background intensity from the cell and environment.
    View less >
    Journal Title
    International Journal of Hydrogen Energy
    Volume
    37
    Issue
    13
    DOI
    https://doi.org/10.1016/j.ijhydene.2012.03.051
    Subject
    Synchrotrons; Accelerators; Instruments and Techniques
    Chemical Sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/47608
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander