• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Self-shape optimisation application: Optimisation of cold-formed steel columns

    Thumbnail
    View/Open
    80496_1.pdf (1.950Mb)
    Author(s)
    Gilbert, Benoit P
    Savoyat, Timothee J-M
    Teh, Lip H
    Griffith University Author(s)
    Gilbert, Benoit
    Savoyat, Timothee
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    This paper presents the optimisation of cold-formed steel open columns using the recently developed self-shape optimisation method that aims to discover new profile shapes. The strength of the cold-formed steel sections is calculated using the Direct Strength Method, and the rules developed in the present work to automatically determine the local and distortional elastic buckling stresses from the Finite Strip and constrained Finite Strip Methods are discussed. The rules are verified against conventional and optimum sections yielded in this research, and found to accurately predict the elastic buckling stresses. The optimisation ...
    View more >
    This paper presents the optimisation of cold-formed steel open columns using the recently developed self-shape optimisation method that aims to discover new profile shapes. The strength of the cold-formed steel sections is calculated using the Direct Strength Method, and the rules developed in the present work to automatically determine the local and distortional elastic buckling stresses from the Finite Strip and constrained Finite Strip Methods are discussed. The rules are verified against conventional and optimum sections yielded in this research, and found to accurately predict the elastic buckling stresses. The optimisation method is applied to singly-symmetric (mono-symmetric) cold-formed steel columns, and the operators behind the method for the special case of singly-symmetric open profiles are introduced in this paper. "Optimum" cross-sections for simply supported columns, 1.2 mm thick, free to warp and subjected to a compressive axial load of 75 kN are presented for column lengths ranging from 1000 to 2500 mm. Results show that the optimum cross-sections are found in a relatively low number of generations, and typically shape to non-conventional "bean", "oval" or rounded "S" sections. The algorithm optimises for distortional and global buckling, therefore likely subjecting the cross-sections to buckling interaction. A manual attempt to redraw the "optimum" cross-sections to include limitations of current manufacturing processes is made. Future developments of the method for practical applications are also discussed.
    View less >
    Journal Title
    Thin-Walled Structures
    Volume
    60
    DOI
    https://doi.org/10.1016/j.tws.2012.06.008
    Copyright Statement
    © 2012 Elsevier B.V. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Structural Engineering
    Aerospace Engineering
    Civil Engineering
    Mechanical Engineering
    Publication URI
    http://hdl.handle.net/10072/47917
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander