Visible Light Active Pure Rutile TiO2 Photoanodes with 100% Exposed Pyramid-Shaped (111) Surfaces
Author(s)
Liu, Xiaolu
Zhang, Haimin
Yao, Xiangdong
An, Taicheng
Liu, Porun
Wang, Yun
Peng, Feng
Carroll, Anthony R
Zhao, Huijun
Year published
2012
Metadata
Show full item recordAbstract
A pure rutile TiO2 photoanode with 100% exposed pyramid-shaped (111) surfaces has been directly synthesized on a fluorine-doped tin oxide (FTO) conducting substrate via a facile one-pot hydrothermal method. The resulting rutile TiO2 film on the FTO substrate possessed a film thickness of ca. 5 μm and showed good mechanical stability. After calcination at 450 °C for 2 h in argon (Ar), the fabricated rutile TiO2 films with 100% exposed pyramid-shaped (111) surfaces were used as photoanodes, exhibiting excellent visible light photoelectrocatalytic activity toward oxidation of water and organics. The excellent visible light ...
View more >A pure rutile TiO2 photoanode with 100% exposed pyramid-shaped (111) surfaces has been directly synthesized on a fluorine-doped tin oxide (FTO) conducting substrate via a facile one-pot hydrothermal method. The resulting rutile TiO2 film on the FTO substrate possessed a film thickness of ca. 5 μm and showed good mechanical stability. After calcination at 450 °C for 2 h in argon (Ar), the fabricated rutile TiO2 films with 100% exposed pyramid-shaped (111) surfaces were used as photoanodes, exhibiting excellent visible light photoelectrocatalytic activity toward oxidation of water and organics. The excellent visible light activity of the pure rutile TiO2 film photoanode can be attributed to the Ti3+ doping in the bulk and high reactivity of the {111} crystal facets. Such a pure rutile TiO2 film with highly reactive (111) surfaces is a promising material for visible light photocatalysis and solar energy conversion.
View less >
View more >A pure rutile TiO2 photoanode with 100% exposed pyramid-shaped (111) surfaces has been directly synthesized on a fluorine-doped tin oxide (FTO) conducting substrate via a facile one-pot hydrothermal method. The resulting rutile TiO2 film on the FTO substrate possessed a film thickness of ca. 5 μm and showed good mechanical stability. After calcination at 450 °C for 2 h in argon (Ar), the fabricated rutile TiO2 films with 100% exposed pyramid-shaped (111) surfaces were used as photoanodes, exhibiting excellent visible light photoelectrocatalytic activity toward oxidation of water and organics. The excellent visible light activity of the pure rutile TiO2 film photoanode can be attributed to the Ti3+ doping in the bulk and high reactivity of the {111} crystal facets. Such a pure rutile TiO2 film with highly reactive (111) surfaces is a promising material for visible light photocatalysis and solar energy conversion.
View less >
Journal Title
Nano Research
Volume
5
Issue
11
Subject
Electroanalytical chemistry
Other environmental sciences not elsewhere classified
Nanomaterials