• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties

    Author(s)
    Zhang, Haimin
    Liu, Xiaolu
    Li, Yibing
    Sun, Qingfeng
    Wang, Yun
    Wood, Barry J
    Liu, Porun
    Yang, Dongjiang
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Liu, Porun
    Wang, Yun
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    In this work, vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles were directly grown onto FTO conducting substrates via a facile, one-pot hydrothermal method. The fabricated nanorod-like rutile TiO2 single crystal nanowire bundles display a diameter range of 150-200 nm and a mean length of 0.9 孮 The nanorod-like bundles assemble by individual single crystal nanowires of 5-7 nm in diameter. The photoanode made of vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles shows excellent photoelectrocatalytic activity towards water oxidation, which is almost 3 times higher than that ...
    View more >
    In this work, vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles were directly grown onto FTO conducting substrates via a facile, one-pot hydrothermal method. The fabricated nanorod-like rutile TiO2 single crystal nanowire bundles display a diameter range of 150-200 nm and a mean length of 0.9 孮 The nanorod-like bundles assemble by individual single crystal nanowires of 5-7 nm in diameter. The photoanode made of vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles shows excellent photoelectrocatalytic activity towards water oxidation, which is almost 3 times higher than that of the photoanode made of vertically aligned anatase TiO2 nanotube film of similar thickness. The high photoelectrocatalytic activity of the photoanode made of the nanorod-like rutile TiO2 single crystal nanowire bundles is mainly due to the superior photoelectron transfer property, which has been manifested by the inherent resistance (R0) of the rutile TiO2 film via a simple photoelectrochemical method. Using this approach, the calculated R0 values are 52.1 O and 71.0 O for the photoanodes made of vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles and the vertically aligned anatase TiO2 nanotubes, respectively. The lower R0 of the rutile TiO2 photoanode means a superior photoelectron transfer property. XPS valence-band spectra analysis indicates that the nanorod-like rutile TiO2 film has almost identical valence band position (1.95 eV) when compared to the anatase TiO2 nanotube film, meaning a similar oxidation capability, further confirming the superior photoelectron transport property of the nanorod-like rutile TiO2 single crystal nanowire bundles.
    View less >
    Journal Title
    Journal of Materials Chemistry
    Volume
    22
    Issue
    6
    DOI
    https://doi.org/10.1039/C2JM15546J
    Subject
    Chemical sciences
    Other environmental sciences not elsewhere classified
    Engineering
    Nanofabrication, growth and self assembly
    Nanomaterials
    Publication URI
    http://hdl.handle.net/10072/48324
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander