• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Stability of rubble-mound breakwater using H50 wave height parameter

    Thumbnail
    View/Open
    80179_1.pdf (717.1Kb)
    Author(s)
    Etemad-Shahidi, Amir
    Bali, Meysam
    Griffith University Author(s)
    Etemad Shahidi, Amir F.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The prediction of rubble mound breakwaters' stability is one of the most important issues in coastal and maritime engineering. The stability of breakwaters strongly depends on the wave height. Therefore, selection of an appropriate wave height parameter is very vital in the prediction of stability number. In this study, H50, the average of the 50 highest waves that reach the breakwater in its useful life, was used to predict the stability of the armor layer. First, H50 was used instead of the significant wave height in the most recent stability formulas. It was found that this modification yields more accurate results. Then, ...
    View more >
    The prediction of rubble mound breakwaters' stability is one of the most important issues in coastal and maritime engineering. The stability of breakwaters strongly depends on the wave height. Therefore, selection of an appropriate wave height parameter is very vital in the prediction of stability number. In this study, H50, the average of the 50 highest waves that reach the breakwater in its useful life, was used to predict the stability of the armor layer. First, H50 was used instead of the significant wave height in the most recent stability formulas. It was found that this modification yields more accurate results. Then, for further improvement of the results, two formulas were developed using model tree. To develop the new formulas, two experimental data sets of irregular waves were used. Results indicated that the proposed formulas are more accurate than the previous ones for the prediction of the stability parameter. Finally, the proposed formulas were applied to regular waves and a wide range of damage levels and it was seen that the developed formulas are applicable in these cases as well.
    View less >
    Journal Title
    Coastal Engineering
    Volume
    59
    Issue
    1
    DOI
    https://doi.org/10.1016/j.coastaleng.2011.07.002
    Copyright Statement
    © 2011 Elsevier B.V.. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Geology
    Oceanography
    Civil engineering
    Civil engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/48351
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander