• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Trap Avoidance in Local Search Using Pseudo-Conflict Learning

    Author(s)
    Pham, DN
    Duong, TT
    Sattar, A
    Griffith University Author(s)
    Sattar, Abdul
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    A key challenge in developing efficient local search solvers is to effectively minimise search stagnation (i.e. avoiding traps or local minima). A majority of the state-of-the-art local search solvers perform random and/or Novelty-based walks to overcome search stagnation. Although such strategies are effective in diversifying a search from its current local minimum, they do not actively prevent the search from visiting previously encountered local minima. In this paper, we propose a new preventative strategy to effectively minimise search stagnation using pseudo-conflict learning. We define a pseudo-conflict as a ...
    View more >
    A key challenge in developing efficient local search solvers is to effectively minimise search stagnation (i.e. avoiding traps or local minima). A majority of the state-of-the-art local search solvers perform random and/or Novelty-based walks to overcome search stagnation. Although such strategies are effective in diversifying a search from its current local minimum, they do not actively prevent the search from visiting previously encountered local minima. In this paper, we propose a new preventative strategy to effectively minimise search stagnation using pseudo-conflict learning. We define a pseudo-conflict as a derived path from the search trajectory that leads to a local minimum. We then introduce a new variable selection scheme that penalises variables causing those pseudo-conflicts. Our experimental results show that the new preventative approach significantly improves the performance of local search solvers on a wide range of structured and random benchmarks.
    View less >
    Conference Title
    Proceedings of the National Conference on Artificial Intelligence
    Volume
    1
    Publisher URI
    http://www.aaai.org/Conferences/AAAI/aaai12.php
    Subject
    Artificial intelligence not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/48435
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander