• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Neural Network-based Handwritten Signature Verification

    Thumbnail
    View/Open
    80467_1.pdf (520.6Kb)
    Author(s)
    McCabe, A
    Trevathan, J
    Read, W
    Griffith University Author(s)
    Trevathan, Jarrod
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    Handwritten signatures are considered as the most natural method of authenticating a person's identity (compared to other biometric and cryptographic forms of authentication). The learning process inherent in Neural Networks (NN) can be applied to the process of verifying handwritten signatures that are electronically captured via a stylus. This paper presents a method for verifying handwritten signatures by using a NN architecture. Various static (e.g., height, slant, etc.) and dynamic (e.g., velocity, pen tip pressure, etc.) signature features are extracted and used to train the NN. Several Network topologies are tested ...
    View more >
    Handwritten signatures are considered as the most natural method of authenticating a person's identity (compared to other biometric and cryptographic forms of authentication). The learning process inherent in Neural Networks (NN) can be applied to the process of verifying handwritten signatures that are electronically captured via a stylus. This paper presents a method for verifying handwritten signatures by using a NN architecture. Various static (e.g., height, slant, etc.) and dynamic (e.g., velocity, pen tip pressure, etc.) signature features are extracted and used to train the NN. Several Network topologies are tested and their accuracy is compared. The resulting system performs reasonably well with an overall error rate of 3:3% being reported for the best case.
    View less >
    Journal Title
    Journal of Computers
    Volume
    3
    Issue
    8
    DOI
    https://doi.org/10.4304/jcp.3.8.9-22
    Subject
    Information and computing sciences
    Information systems not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/48449
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander