Neural Network-based Handwritten Signature Verification

View/ Open
Author(s)
McCabe, A
Trevathan, J
Read, W
Griffith University Author(s)
Year published
2008
Metadata
Show full item recordAbstract
Handwritten signatures are considered as the most natural method of authenticating a person's identity (compared to other biometric and cryptographic forms of authentication). The learning process inherent in Neural Networks (NN) can be applied to the process of verifying handwritten signatures that are electronically captured via a stylus. This paper presents a method for verifying handwritten signatures by using a NN architecture. Various static (e.g., height, slant, etc.) and dynamic (e.g., velocity, pen tip pressure, etc.) signature features are extracted and used to train the NN. Several Network topologies are tested ...
View more >Handwritten signatures are considered as the most natural method of authenticating a person's identity (compared to other biometric and cryptographic forms of authentication). The learning process inherent in Neural Networks (NN) can be applied to the process of verifying handwritten signatures that are electronically captured via a stylus. This paper presents a method for verifying handwritten signatures by using a NN architecture. Various static (e.g., height, slant, etc.) and dynamic (e.g., velocity, pen tip pressure, etc.) signature features are extracted and used to train the NN. Several Network topologies are tested and their accuracy is compared. The resulting system performs reasonably well with an overall error rate of 3:3% being reported for the best case.
View less >
View more >Handwritten signatures are considered as the most natural method of authenticating a person's identity (compared to other biometric and cryptographic forms of authentication). The learning process inherent in Neural Networks (NN) can be applied to the process of verifying handwritten signatures that are electronically captured via a stylus. This paper presents a method for verifying handwritten signatures by using a NN architecture. Various static (e.g., height, slant, etc.) and dynamic (e.g., velocity, pen tip pressure, etc.) signature features are extracted and used to train the NN. Several Network topologies are tested and their accuracy is compared. The resulting system performs reasonably well with an overall error rate of 3:3% being reported for the best case.
View less >
Journal Title
Journal of Computers
Volume
3
Issue
8
Subject
Information and computing sciences
Information systems not elsewhere classified