Analysis of Nonlinear Phenomena in a Thermal Micro-Actuator with a Built-in Thermal Position Sensor

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Bazaei, Ali
Zhu, Yong
Moheimani, Reza
Yuce, Mehmet Rasit
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
An analysis of nonlinear effects associated with a chevron thermal micro-actuator with a built in thermal position sensor under static conditions is presented in this paper. The nonlinearities present in both actuator and sensor are studied. The phenomena considered for the sensor include: thermal coupling from actuator to sensor and temperature dependence of electrical resistivity. Those considered for the actuator include: non-uniform spatial distribution of temperature in arms, temperature dependency of thermal expansion coefficient, deviation of arm shape from straight line due to physical constraints, and temperature ...
View more >An analysis of nonlinear effects associated with a chevron thermal micro-actuator with a built in thermal position sensor under static conditions is presented in this paper. The nonlinearities present in both actuator and sensor are studied. The phenomena considered for the sensor include: thermal coupling from actuator to sensor and temperature dependence of electrical resistivity. Those considered for the actuator include: non-uniform spatial distribution of temperature in arms, temperature dependency of thermal expansion coefficient, deviation of arm shape from straight line due to physical constraints, and temperature dependence of electrical resistivity.
View less >
View more >An analysis of nonlinear effects associated with a chevron thermal micro-actuator with a built in thermal position sensor under static conditions is presented in this paper. The nonlinearities present in both actuator and sensor are studied. The phenomena considered for the sensor include: thermal coupling from actuator to sensor and temperature dependence of electrical resistivity. Those considered for the actuator include: non-uniform spatial distribution of temperature in arms, temperature dependency of thermal expansion coefficient, deviation of arm shape from straight line due to physical constraints, and temperature dependence of electrical resistivity.
View less >
Journal Title
IEEE Sensors Journal
Volume
12
Issue
6
Copyright Statement
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Subject
Atomic, molecular and optical physics
Mechanical engineering
Microelectromechanical systems (MEMS)