Concept Learning for EL++ by Refinement and Reinforcement
Author(s)
Chitsaz, M
Wang, K
Blumenstein, M
Qi, G
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
Ontology construction in OWL is an important and yet time-consuming task even for knowledge engineers and thus a (semi-) automatic approach will greatly assist in constructing ontologies. In this paper, we propose a novel approach to learning concept definitions in EL++ from a collection of assertions. Our approach is based on both refinement operator in inductive logic programming and reinforcement learning algorithm. The use of reinforcement learning significantly reduces the search space of candidate concepts. Besides, we present an experimental evaluation of constructing a family ontology. The results show that our ...
View more >Ontology construction in OWL is an important and yet time-consuming task even for knowledge engineers and thus a (semi-) automatic approach will greatly assist in constructing ontologies. In this paper, we propose a novel approach to learning concept definitions in EL++ from a collection of assertions. Our approach is based on both refinement operator in inductive logic programming and reinforcement learning algorithm. The use of reinforcement learning significantly reduces the search space of candidate concepts. Besides, we present an experimental evaluation of constructing a family ontology. The results show that our approach is competitive with an existing learning system for EL.
View less >
View more >Ontology construction in OWL is an important and yet time-consuming task even for knowledge engineers and thus a (semi-) automatic approach will greatly assist in constructing ontologies. In this paper, we propose a novel approach to learning concept definitions in EL++ from a collection of assertions. Our approach is based on both refinement operator in inductive logic programming and reinforcement learning algorithm. The use of reinforcement learning significantly reduces the search space of candidate concepts. Besides, we present an experimental evaluation of constructing a family ontology. The results show that our approach is competitive with an existing learning system for EL.
View less >
Journal Title
Lecture Notes in Computer Science
Volume
7458
Subject
Artificial intelligence not elsewhere classified