• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • FLP Semantics Without Circular Justifications for General Logic Programs

    Thumbnail
    View/Open
    81138_1.pdf (209.0Kb)
    Author(s)
    Shen, YD
    Wang, K
    Griffith University Author(s)
    Wang, Kewen
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The FLP semantics presented by (Faber, Leone, and Pfeifer 2004) has been widely used to define answer sets, called FLP answer sets, for different types of logic programs such as logic programs with aggregates, description logic programs (dl-programs), Hex programs, and logic programs with first-order formulas (general logic programs). However, it was recently observed that the FLP semantics may produce unintuitive answer sets with circular justifications caused by self-supporting loops. In this paper, we address the circular justification problem for general logic programs by enhancing the FLP semantics with a ...
    View more >
    The FLP semantics presented by (Faber, Leone, and Pfeifer 2004) has been widely used to define answer sets, called FLP answer sets, for different types of logic programs such as logic programs with aggregates, description logic programs (dl-programs), Hex programs, and logic programs with first-order formulas (general logic programs). However, it was recently observed that the FLP semantics may produce unintuitive answer sets with circular justifications caused by self-supporting loops. In this paper, we address the circular justification problem for general logic programs by enhancing the FLP semantics with a level mapping formalism. In particular, we extend the Gelfond-Lifschitz three step definition of the standard answer set semantics from normal logic programs to general logic programs and define for general logic programs the first FLP semantics that is free of circular justifications.We call this FLP semantics the well-justified FLP semantics. This method naturally extends to general logic programs with additional constraints like aggregates, thus providing a unifying framework for defining the well-justified FLP semantics for various types of logic programs. When this method is applied to normal logic programs with aggregates, the well-justified FLP semantics agrees with the conditional satisfaction based semantics defined by (Son, Pontelli, and Tu 2007); and when applied to dlprograms, the semantics agrees with the strongly wellsupported semantics defined by (Shen 2011).
    View less >
    Conference Title
    Proceedings of the National Conference on Artificial Intelligence
    Volume
    1
    Publisher URI
    http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4825
    Copyright Statement
    © 2012 AAAI Press. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the conference's website for access to the definitive, published version.
    Subject
    Artificial Intelligence and Image Processing not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/48507
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander