Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
Author(s)
Mirjalili, SeyedAli
Hashim, Siti Zaiton Mohd
Sardroudi, Hossein Moradian
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
The Gravitational Search Algorithm (GSA) is a novel heuristic optimization method based on the law of gravity and mass interactions. It has been proven that this algorithm has good ability to search for the global optimum, but it suffers from slow searching speed in the last iterations. This work proposes a hybrid of Particle Swarm Optimization (PSO) and GSA to resolve the aforementioned problem. In this paper, GSA and PSOGSA are employed as new training methods for Feedforward Neural Networks (FNNs) in order to investigate the efficiencies of these algorithms in reducing the problems of trapping in local minima and the slow ...
View more >The Gravitational Search Algorithm (GSA) is a novel heuristic optimization method based on the law of gravity and mass interactions. It has been proven that this algorithm has good ability to search for the global optimum, but it suffers from slow searching speed in the last iterations. This work proposes a hybrid of Particle Swarm Optimization (PSO) and GSA to resolve the aforementioned problem. In this paper, GSA and PSOGSA are employed as new training methods for Feedforward Neural Networks (FNNs) in order to investigate the efficiencies of these algorithms in reducing the problems of trapping in local minima and the slow convergence rate of current evolutionary learning algorithms. The results are compared with a standard PSO-based learning algorithm for FNNs. The resulting accuracy of FNNs trained with PSO, GSA, and PSOGSA is also investigated. The experimental results show that PSOGSA outperforms both PSO and GSA for training FNNs in terms of converging speed and avoiding local minima. It is also proven that an FNN trained with PSOGSA has better accuracy than one trained with GSA.
View less >
View more >The Gravitational Search Algorithm (GSA) is a novel heuristic optimization method based on the law of gravity and mass interactions. It has been proven that this algorithm has good ability to search for the global optimum, but it suffers from slow searching speed in the last iterations. This work proposes a hybrid of Particle Swarm Optimization (PSO) and GSA to resolve the aforementioned problem. In this paper, GSA and PSOGSA are employed as new training methods for Feedforward Neural Networks (FNNs) in order to investigate the efficiencies of these algorithms in reducing the problems of trapping in local minima and the slow convergence rate of current evolutionary learning algorithms. The results are compared with a standard PSO-based learning algorithm for FNNs. The resulting accuracy of FNNs trained with PSO, GSA, and PSOGSA is also investigated. The experimental results show that PSOGSA outperforms both PSO and GSA for training FNNs in terms of converging speed and avoiding local minima. It is also proven that an FNN trained with PSOGSA has better accuracy than one trained with GSA.
View less >
Journal Title
Applied Mathematics and Computation
Volume
218
Issue
22
Subject
Applied mathematics
Numerical and computational mathematics
Theory of computation