• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Beyond the random phase approximation on the cheap: Improved correlation energies with the efficient “radial exchange hole” kernel

    Thumbnail
    View/Open
    81863_1.pdf (108.3Kb)
    Author(s)
    Gould, Tim
    Griffith University Author(s)
    Gould, Tim J.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The "ACFD-RPA" correlation energy functional has been widely applied to a variety of systems to successfully predict energy differences, and less successfully predict absolute correlation energies. Here, we present a parameter-free exchange-correlation kernel that systematically improves absolute correlation energies, while maintaining most of the good numerical properties that make the ACFD-RPA numerically tractable. The radial exchange hole kernel is constructed to approximate the true exchange kernel via a carefully weighted, easily computable radial averaging. Correlation energy errors of atoms with 2-18 electrons show ...
    View more >
    The "ACFD-RPA" correlation energy functional has been widely applied to a variety of systems to successfully predict energy differences, and less successfully predict absolute correlation energies. Here, we present a parameter-free exchange-correlation kernel that systematically improves absolute correlation energies, while maintaining most of the good numerical properties that make the ACFD-RPA numerically tractable. The radial exchange hole kernel is constructed to approximate the true exchange kernel via a carefully weighted, easily computable radial averaging. Correlation energy errors of atoms with 2-18 electrons show a 13-fold improvement over the RPA and a threefold improvement over the related Petersilka, Gossmann, and Gross kernel, for a mean absolute error of 13 mHa or 5%. The average error is small compared to all but the most difficult to evaluate kernels. van der Waals C6 coefficients are less well predicted, but still show improvements on the RPA, especially for highly polarisable Li and Na.
    View less >
    Journal Title
    The Journal of Chemical Physics
    Volume
    137
    DOI
    https://doi.org/10.1063/1.4755286
    Copyright Statement
    © 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Vol/137, pp.111101-1 - 111101-4 and may be found at http://dx.doi.org/10.1063/1.4755286.
    Subject
    Physical sciences
    Condensed matter modelling and density functional theory
    Chemical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/48628
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander