Synthesis and evaluation of novel 3-C-alkylated-Neu5Ac2en derivatives as probes of influenza virus sialidase 150-loop flexibility
Author(s)
Rudrawar, Santosh
Kerry, Philip S
Rameix-Welti, Marie-Anne
Maggioni, Andrea
Dyason, Jeffrey C
Rose, Faith J
van der Werf, Sylvie
Thomson, Robin J
Naffakh, Nadia
Russell, Rupert JM
von Itzstein, Mark
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
Novel 3-C-alkylated-Neu5Ac2en derivatives have been designed to target the expanded active site cavity of influenza virus sialidases with an open 150-loop, currently seen in X-ray crystal structures of influenza A virus group-1 (N1, N4, N5, N8), but not group-2 (N2, N9), sialidases. The compounds show selectivity for inhibition of H5N1 and pdm09 H1N1 sialidases over an N2 sialidase, providing evidence of the relative 150-loop flexibility of these sialidases. In a complex with N8 sialidase, the C3 substituent of 3-phenylally-Neu5Ac2en occupies the 150-cavity while the central ring and the remaining substituents bind the active ...
View more >Novel 3-C-alkylated-Neu5Ac2en derivatives have been designed to target the expanded active site cavity of influenza virus sialidases with an open 150-loop, currently seen in X-ray crystal structures of influenza A virus group-1 (N1, N4, N5, N8), but not group-2 (N2, N9), sialidases. The compounds show selectivity for inhibition of H5N1 and pdm09 H1N1 sialidases over an N2 sialidase, providing evidence of the relative 150-loop flexibility of these sialidases. In a complex with N8 sialidase, the C3 substituent of 3-phenylally-Neu5Ac2en occupies the 150-cavity while the central ring and the remaining substituents bind the active site as seen for the unsubstituted template. This new class of inhibitors, which can 'trap' the open 150-loop form of the sialidase, should prove useful as probes of 150-loop flexibility.
View less >
View more >Novel 3-C-alkylated-Neu5Ac2en derivatives have been designed to target the expanded active site cavity of influenza virus sialidases with an open 150-loop, currently seen in X-ray crystal structures of influenza A virus group-1 (N1, N4, N5, N8), but not group-2 (N2, N9), sialidases. The compounds show selectivity for inhibition of H5N1 and pdm09 H1N1 sialidases over an N2 sialidase, providing evidence of the relative 150-loop flexibility of these sialidases. In a complex with N8 sialidase, the C3 substituent of 3-phenylally-Neu5Ac2en occupies the 150-cavity while the central ring and the remaining substituents bind the active site as seen for the unsubstituted template. This new class of inhibitors, which can 'trap' the open 150-loop form of the sialidase, should prove useful as probes of 150-loop flexibility.
View less >
Journal Title
Organic & Biomolecular Chemistry
Volume
10
Issue
43
Subject
Medicinal and biomolecular chemistry
Biologically active molecules
Organic chemistry