• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Structural Basis of Rotavirus Strain Preference toward N-Acetyl- or N-Glycolylneuraminic Acid-Containing Receptors

    Author(s)
    Yu, Xing
    Dang, Vi T
    Fleming, Fiona E
    von Itzstein, Mark
    Coulson, Barbara S
    Blanchard, Helen
    Griffith University Author(s)
    von Itzstein, Mark
    Coulson, Barbara
    Blanchard, Helen
    Yu, Xing
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The rotavirus spike protein domain VP8* is essential for recognition of cell-surface carbohydrate receptors, notably those incorporating N-acylneuraminic acids (members of the sialic acid family). N-acetylneuraminic acids occur naturally in both animals and humans whereas N-glycolylneuraminic acids are present only through dietary uptake in normal human tissues. The preference of animal rotaviruses towards these natural N-acylneuraminic acids has not been comprehensively established, and detailed structural information regarding the interactions of different rotaviruses with N-glycolylneuraminic acids is lacking. In this ...
    View more >
    The rotavirus spike protein domain VP8* is essential for recognition of cell-surface carbohydrate receptors, notably those incorporating N-acylneuraminic acids (members of the sialic acid family). N-acetylneuraminic acids occur naturally in both animals and humans whereas N-glycolylneuraminic acids are present only through dietary uptake in normal human tissues. The preference of animal rotaviruses towards these natural N-acylneuraminic acids has not been comprehensively established, and detailed structural information regarding the interactions of different rotaviruses with N-glycolylneuraminic acids is lacking. In this study, distinct specificities of VP8* towards N-acetyl- and N-glycolylneuraminic acids were revealed using biophysical techniques. VP8* protein from porcine rotavirus CRW-8 and bovine rotavirus NCDV showed preference for N-glycolyl- over N-acetylneuraminic acids, contrasting with monkey rotavirus RRV. Crystallographic structures of VP8* from CRW-8 and RRV with bound methyl N-glycolylneuraminide revealed the atomic details of their interactions. We examined the influence of amino acid type at position 157, which is proximal to the ligand's N-acetyl- or N-glycolyl-moiety and can mutate upon cell culture adaptation. A structure-based hypothesis derived from these results could account for rotavirus discrimination between the N-acylneuraminic acid forms. Infectivity blockade experiments demonstrated that the determined carbohydrate specificities of these VP8* directly correlate with those of the corresponding infectious virus. This includes an association between CRW-8 adaption to cell culture, decreased competition by N-glycolylneuraminic acid for CRW-8 infectivity, and a Pro157 to Ser157 mutation in VP8* that reduces binding affinity for N-glycolylneuraminic acid.
    View less >
    Journal Title
    Journal of Virology
    Volume
    86
    Issue
    24
    DOI
    https://doi.org/10.1128/JVI.06975-11
    Subject
    Biomolecular Modelling and Design
    Proteins and Peptides
    Biological Sciences
    Agricultural and Veterinary Sciences
    Medical and Health Sciences
    Publication URI
    http://hdl.handle.net/10072/48644
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander