Show simple item record

dc.contributor.authorMorrongiello, John R
dc.contributor.authorBond, Nicholas R
dc.contributor.authorCrook, David A
dc.contributor.authorWong, Bob BM
dc.date.accessioned2017-05-03T15:36:39Z
dc.date.available2017-05-03T15:36:39Z
dc.date.issued2012
dc.date.modified2013-06-17T23:17:08Z
dc.identifier.issn0021-8790
dc.identifier.doi10.1111/j.1365-2656.2012.01961.x
dc.identifier.urihttp://hdl.handle.net/10072/48694
dc.description.abstractSummary 1. Maternal reproductive investment is thought to reflect a trade-off between offspring size and fecundity, and models generally predict that mothers inhabiting adverse environments will produce fewer, larger offspring. More recently, the importance of environmental unpredictability in influencing maternal investment has been considered, with some models predicting that mothers should adopt a diversified bet-hedging strategy whilst others a conservative bet-hedging strategy. 2. We explore spatial egg size and fecundity patterns in the freshwater fish southern pygmy perch (Nannoperca australis) that inhabits a diversity of streams along gradients of environmental quality, variability and predictability. 3. Contrary to some predictions, N. australis populations inhabiting increasingly harsh streams produced more numerous and smaller eggs. Furthermore, within-female egg size variability increased as environments became more unpredictable. 4. We argue that in harsh environments or those prone to physical disturbance, sources of mortality are size independent with offspring size having only a minor influence on offspring fitness. Instead, maternal fitness is maximized by producing many small eggs, increasing the likelihood that some offspring will disperse to permanent water. We also provide empirical support for diversified bet-hedging as an adaptive strategy when future environmental quality is uncertain and suggest egg size may be a more appropriate fitness measure in stable environments characterized by size-dependent fitness. These results likely reflect spatial patterns of adaptive plasticity and bet-hedging in response to both predictable and unpredictable environmental variance and highlight the importance of considering both trait averages and variance. 5. Reproductive life-history traits can vary predictably along environmental gradients. Human activity, such as the hydrological modification of natural flow regimes, alters the form and magnitude of these gradients, and this can have both ecological and evolutionary implications for biota adapted to now non-existent natural environmental heterogeneity.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.languageEnglish
dc.language.isoen_US
dc.publisherWiley-Blackwell Publishing
dc.publisher.placeUnited Kingdom
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom806
dc.relation.ispartofpageto817
dc.relation.ispartofissue4
dc.relation.ispartofjournalJournal of Animal Ecology
dc.relation.ispartofvolume81
dc.rights.retentionY
dc.subject.fieldofresearchFreshwater Ecology
dc.subject.fieldofresearchEnvironmental Sciences
dc.subject.fieldofresearchBiological Sciences
dc.subject.fieldofresearchAgricultural and Veterinary Sciences
dc.subject.fieldofresearchcode060204
dc.subject.fieldofresearchcode05
dc.subject.fieldofresearchcode06
dc.subject.fieldofresearchcode07
dc.titleSpatial variation in egg size and egg number reflects trade-offs and bet-hedging in a freshwater fish
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.date.issued2012
gro.hasfulltextNo Full Text
gro.griffith.authorBond, Nick R.


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record