• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Wave energy potential along the northern coasts of the Gulf of Oman, Iran

    Thumbnail
    View/Open
    81440_1.pdf (620.9Kb)
    Author(s)
    Saket, A
    Etemad-Shahidi, A
    Griffith University Author(s)
    Etemad Shahidi, Amir F.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    This study aims to investigate wave power along the northern coasts of the Gulf of Oman. To simulate wave parameters the third generation spectral SWAN model was utilized, and the results were validated with buoy and ADCP data. First, annual energy was calculated in the study region with the hindcast data set covering 23 years (1985e2007). The areas with the highest wave resource were determined and the area proximity to the port of Chabahar is suggested as the best site for the installation of a wave farm. Second, the average monthly wave energy in this area was investigated. The most energetic waves are provided by the ...
    View more >
    This study aims to investigate wave power along the northern coasts of the Gulf of Oman. To simulate wave parameters the third generation spectral SWAN model was utilized, and the results were validated with buoy and ADCP data. First, annual energy was calculated in the study region with the hindcast data set covering 23 years (1985e2007). The areas with the highest wave resource were determined and the area proximity to the port of Chabahar is suggested as the best site for the installation of a wave farm. Second, the average monthly wave energy in this area was investigated. The most energetic waves are provided by the southeast Indian Ocean monsoon from June to August. Finally, the wave energy resource was characterized in terms of sea state parameters. It was found that the bulk of annual wave energy occurs for significant wave heights between 1 and 3 m and energy periods between 4 and 8 s in the direction of SSE.
    View less >
    Journal Title
    Renewable Energy
    Volume
    40
    Issue
    1
    DOI
    https://doi.org/10.1016/j.renene.2011.09.024
    Copyright Statement
    © 2012 Elsevier. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Water resources engineering
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/48710
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander