• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Free Radical Activity in Gamma-Irradiated Polyethylene Film, Drawn Tape and Ultra High Modulus Fibres determined by Grafting Performance

    Author(s)
    Busfield, WK
    Watson, GS
    Griffith University Author(s)
    Busfield, Ken K.
    Watson, Gregory S.
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Grafting rates of gaseous butadiene to a range of morphological forms of gamma-irradiated polyethylene, including ultra-high-modulus fibres (UHMPE), have been measured in order to determine the availability of active free radicals over time at various temperatures. Blank experiments on unirradiated samples showed that monomer diffusion is not rate-controlling with film and natural draw ratio tapes, but is likely to be a major factor in the control of grafting rates in UHMPE fibres. Grafting rates from monomer loss/time experiments with irradiated samples indicate that grafting is always in competition with free radical ...
    View more >
    Grafting rates of gaseous butadiene to a range of morphological forms of gamma-irradiated polyethylene, including ultra-high-modulus fibres (UHMPE), have been measured in order to determine the availability of active free radicals over time at various temperatures. Blank experiments on unirradiated samples showed that monomer diffusion is not rate-controlling with film and natural draw ratio tapes, but is likely to be a major factor in the control of grafting rates in UHMPE fibres. Grafting rates from monomer loss/time experiments with irradiated samples indicate that grafting is always in competition with free radical self-annihilation, the extent being influenced by temperature, dose and morphology, including prior sample annealing. At lower temperatures, graft-active radicals are produced over long periods of time, eg close to linear grafting rates were monitored over 20 hours for PE tape at 0 à(50 kGy) and for gel-spun UHMPE at 40 à(100 kGy). At higher temperatures, grafting rates steadily decrease with time. Grafting rates are almost independent of irradiation dose in the early stages, however, the dose has an increasing positive influence as the reaction proceeds. At any given temperature and irradiation dose, the rates decrease in the series undrawn film; natural draw ratio tape; high draw ratio gel-spun fibre; high draw ratio melt-spun fibre. An analogy is drawn between these results and the optimum conditions required for improving the creep properties of PE tape and UHMPE fibres by acetylene-sensitized irradiation crosslinking.
    View less >
    Journal Title
    Polymer International
    Volume
    54
    Issue
    7
    Publisher URI
    https://onlinelibrary.wiley.com/doi/10.1002/pi.1807
    DOI
    https://doi.org/10.1002/pi.1807
    Copyright Statement
    © 2005 John Wiley & Sons, Ltd. Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the author for more information.
    Subject
    Analytical chemistry
    Chemical engineering
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/4924
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander