• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • States for phase estimation in quantum interferometry

    Thumbnail
    View/Open
    30797_1.pdf (288.2Kb)
    Author(s)
    Combes, J
    Wiseman, HM
    Griffith University Author(s)
    Wiseman, Howard M.
    Year published
    2005
    Metadata
    Show full item record
    Abstract
    Ramsey interferometry allows the estimation of the phase f of rotation of the pseudospin vector of an ensemble of two-state quantum systems. For f small, the noise-to-signal ratio scales as the spin-squeezing parameter ?, with ? < 1 possible for an entangled ensemble. However states with minimum ? are not optimal for single-shot measurements of an arbitrary phase. We define a phase-squeezing parameter, ?, which is an appropriate figure of merit for this case. We show that (unlike the states that minimize ?) the states that minimize can be created by evolving an unentangled state (coherent spin state) by the well known two-axis ...
    View more >
    Ramsey interferometry allows the estimation of the phase f of rotation of the pseudospin vector of an ensemble of two-state quantum systems. For f small, the noise-to-signal ratio scales as the spin-squeezing parameter ?, with ? < 1 possible for an entangled ensemble. However states with minimum ? are not optimal for single-shot measurements of an arbitrary phase. We define a phase-squeezing parameter, ?, which is an appropriate figure of merit for this case. We show that (unlike the states that minimize ?) the states that minimize can be created by evolving an unentangled state (coherent spin state) by the well known two-axis counter-twisting Hamiltonian. We analyse these and other states (for example the maximally entangled state, analogous to the optical 'NOON' state |?) = (|N, 0) + |0, N))/v2) using several different properties, including ?, <, the coefficients in the pseudo-angular momentum basis (in the three primary directions) and the angular Wigner function W(?,F). Finally, we discuss the experimental options for creating phase-squeezed states and doing single-shot phase estimation.
    View less >
    Journal Title
    Journal of Optics B: Quantum and semiclassical optics
    Volume
    7
    Issue
    1
    Publisher URI
    https://iopscience.iop.org/article/10.1088/1464-4266/7/1/004
    DOI
    https://doi.org/10.1088/1464-4266/7/1/004
    Copyright Statement
    © 2005 Institute of Physics Publishing. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher.Please refer to the journal's website for access to the definitive, published version.
    Publication URI
    http://hdl.handle.net/10072/4934
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander