Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-Splines

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Sartori, Massimo
Reggiani, Monica
van den Bogert, Antonie J
Lloyd, David G
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
We present a robust and computationally inexpensive method to estimate the lengths and three-dimensional moment arms for a large number of musculotendon actuators of the human lower limb. Using a musculoskeletal model of the lower extremity, a set of values was established for the length of each musculotendon actuator for different lower limb generalized coordinates (joint angles). A multidimensional spline function was then used to fit these data. Muscle moment arms were obtained by differentiating the musculotendon length spline function with respect to the generalized coordinate of interest. This new method was then ...
View more >We present a robust and computationally inexpensive method to estimate the lengths and three-dimensional moment arms for a large number of musculotendon actuators of the human lower limb. Using a musculoskeletal model of the lower extremity, a set of values was established for the length of each musculotendon actuator for different lower limb generalized coordinates (joint angles). A multidimensional spline function was then used to fit these data. Muscle moment arms were obtained by differentiating the musculotendon length spline function with respect to the generalized coordinate of interest. This new method was then compared to a previously used polynomial regression method. Compared to the polynomial regression method, the multidimensional spline method produced lower errors for estimating musculotendon lengths and moment arms throughout the whole generalized coordinate workspace. The fitting accuracy was also less affected by the number of dependent degrees of freedom and by the amount of experimental data available. The spline method only required information on musculotendon lengths to estimate both musculotendon lengths and moment arms, thus relaxing data input requirements, whereas the polynomial regression requires different equations to be used for both musculotendon lengths and moment arms. Finally, we used the spline method in conjunction with an electromyography driven musculoskeletal model to estimate muscle forces under different contractile conditions, which showed that the method is suitable for the integration into large scale neuromusculoskeletal models.
View less >
View more >We present a robust and computationally inexpensive method to estimate the lengths and three-dimensional moment arms for a large number of musculotendon actuators of the human lower limb. Using a musculoskeletal model of the lower extremity, a set of values was established for the length of each musculotendon actuator for different lower limb generalized coordinates (joint angles). A multidimensional spline function was then used to fit these data. Muscle moment arms were obtained by differentiating the musculotendon length spline function with respect to the generalized coordinate of interest. This new method was then compared to a previously used polynomial regression method. Compared to the polynomial regression method, the multidimensional spline method produced lower errors for estimating musculotendon lengths and moment arms throughout the whole generalized coordinate workspace. The fitting accuracy was also less affected by the number of dependent degrees of freedom and by the amount of experimental data available. The spline method only required information on musculotendon lengths to estimate both musculotendon lengths and moment arms, thus relaxing data input requirements, whereas the polynomial regression requires different equations to be used for both musculotendon lengths and moment arms. Finally, we used the spline method in conjunction with an electromyography driven musculoskeletal model to estimate muscle forces under different contractile conditions, which showed that the method is suitable for the integration into large scale neuromusculoskeletal models.
View less >
Journal Title
Journal of Biomechanics
Volume
45
Issue
3
Copyright Statement
© 2012 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Subject
Biomedical engineering
Biomechanical engineering
Mechanical engineering
Sports science and exercise
Biomechanics