• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Grand Challenge Competition to Predict In Vivo Knee Loads

    Author(s)
    Fregly, Benjamin J
    Besier, Thor F
    Lloyd, David G
    Delp, Scott L
    Banks, Scott A
    Pandy, Marcus G
    D'Lima, Darryl D
    Griffith University Author(s)
    Lloyd, David
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model-based treatment design is validation of model-based estimates of in vivo contact and muscle forces. This paper introduces an annual ''Grand Challenge Competition to Predict In Vivo Knee Loads'' based on a series of comprehensive publicly available in vivo data sets for evaluating ...
    View more >
    Impairment of the human neuromusculoskeletal system can lead to significant mobility limitations and decreased quality of life. Computational models that accurately represent the musculoskeletal systems of individual patients could be used to explore different treatment options and optimize clinical outcome. The most significant barrier to model-based treatment design is validation of model-based estimates of in vivo contact and muscle forces. This paper introduces an annual ''Grand Challenge Competition to Predict In Vivo Knee Loads'' based on a series of comprehensive publicly available in vivo data sets for evaluating musculoskeletal model predictions of contact and muscle forces in the knee. The data sets come from patients implanted with force-measuring tibial prostheses. Following a historical review of musculoskeletal modeling methods used for estimating knee muscle and contact forces, we describe the first two data sets used for the first two competitions and summarize four subsequent data sets to be used for future competitions. These data sets include tibial contact force, video motion, ground reaction, muscle EMG, muscle strength, static and dynamic imaging, and implant geometry data. Competition participants create musculoskeletal models to predict tibial contact forces without having access to the corresponding in vivo measurements. These blinded predictions provide an unbiased evaluation of the capabilities and limitations of musculoskeletal modeling methods. The paper concludes with a discussion of how these unique data sets can be used by the musculoskeletal modeling research community to improve the estimation of in vivo muscle and contact forces and ultimately to help make musculoskeletal models clinically useful.
    View less >
    Journal Title
    Journal of Orthopaedic Research
    Volume
    30
    Issue
    4
    DOI
    https://doi.org/10.1002/jor.22023
    Subject
    Biomedical engineering
    Biomechanical engineering
    Clinical sciences
    Sports science and exercise
    Biomechanics
    Publication URI
    http://hdl.handle.net/10072/49444
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander