• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Using water residency time to enhance spatio-temporal connectivity for conservation planning in seasonally dynamic freshwater ecosystems

    Thumbnail
    View/Open
    83461_1.pdf (1.000Mb)
    Author(s)
    Hermoso, Virgilio
    Ward, Doug P
    Kennard, Mark J
    Griffith University Author(s)
    Ward, Douglas P.
    Kennard, Mark J.
    Hermoso, Virgilio
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Summary Addressing spatial connectivity in conservation planning is important to ensure the maintenance of patterns and processes needed to support the persistence of biodiversity. In freshwater ecosystems, spatial connectivity is constrained by the presence of water, which exhibits marked temporal changes in regions with wet-dry seasonal climates. Previous studies have focused on spatial connectivity and overlooked the temporal component, which is required for the functionality of spatial connections (because of temporal changes in water availability). We identify priority areas for the conservation of freshwater ...
    View more >
    Summary Addressing spatial connectivity in conservation planning is important to ensure the maintenance of patterns and processes needed to support the persistence of biodiversity. In freshwater ecosystems, spatial connectivity is constrained by the presence of water, which exhibits marked temporal changes in regions with wet-dry seasonal climates. Previous studies have focused on spatial connectivity and overlooked the temporal component, which is required for the functionality of spatial connections (because of temporal changes in water availability). We identify priority areas for the conservation of freshwater fish, waterbirds and turtles in the Mitchell River catchment in the wet-dry tropics of northern Australia. We demonstrate how adequacy of freshwater conservation can be enhanced by integrating an estimate of water residency time (WRT) into the prioritization process. WRT reflects refugial potential and connectivity in freshwater ecosystems and was quantified using Moderate Resolution Imaging Spectroradiometer (MODIS) flood and post-flood Landsat satellite imagery. We compare the spatial allocation of priority areas and the spatial and temporal connectivity under two alternative scenarios: (i) accounting only for spatial connectivity and (ii) integrating spatial and temporal connectivity. Priority areas identified under the spatial and temporal connectivity scenario showed a 40% increase in WRT values with respect to the traditional spatial connectivity scenario. This was achieved at no additional cost in terms of total protected area and maintaining the same spatial connectivity. Despite priority areas identified under the two alternative scenarios showing intermediate spatial overlap (64%), the selection process was more efficiently biased towards planning units with high WRT values. WRT in planning units that were only selected under the temporal connectivity scenario was 2絠times higher than in planning units that only appeared in the traditional connectivity scenario. This reveals the importance of accounting for WRT when identifying freshwater priority areas in wet-dry seasonal environments. Synthesis and applications: Considering the temporal connectivity in conservation prioritization as we propose here helps to assess periods of longest spatial connections, thereby maximizing the refugial role of freshwater priority areas during dry periods. Using publicly available satellite imagery data and software, our approach allows improved management of aquatic resources and biodiversity during periods of water scarcity, which may increase in incidence and duration with climate change.
    View less >
    Journal Title
    Journal of Applied Ecology
    Volume
    49
    Issue
    5
    DOI
    https://doi.org/10.1111/j.1365-2664.2012.02191.x
    Copyright Statement
    Author Posting. Copyright The Authors 2012 . This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Journal of Applied Ecology, Volume 49, Issue 5, pages 1028–1035, October 2012, http://dx.doi.org/10.1111/j.1365-2664.2012.02191.x
    Subject
    Conservation and Biodiversity
    Ecological Applications
    Environmental Science and Management
    Ecology
    Publication URI
    http://hdl.handle.net/10072/49584
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander