• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A biphasic scaffold for simultaneous alveolar bone and periodontal ligament regeneration

    Author(s)
    Vaquette, C
    Fan, W
    Xiao, Y
    Hamlet, S
    Ivanovski, S
    Hutmacher, DW
    Griffith University Author(s)
    Hamlet, Stephen
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal complex regeneration. This strategy combined osteoblast impregnated in the bone compartment and multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. After 21 days in culture the osteoblasts deposited mineralized matrix in the bone compartment and the cell sheets formed of a PDL-like tissue. The scaffolds were placed onto a dentin block and implanted in a rodent subcutaneous model for 8 weeks. In the bone compartment ...
    View more >
    This study describes the design of a biphasic scaffold composed of a Fused Deposition Modeling scaffold (bone compartment) and an electrospun membrane (periodontal compartment) for periodontal complex regeneration. This strategy combined osteoblast impregnated in the bone compartment and multiple periodontal ligament (PDL) cell sheets on the electrospun membrane. After 21 days in culture the osteoblasts deposited mineralized matrix in the bone compartment and the cell sheets formed of a PDL-like tissue. The scaffolds were placed onto a dentin block and implanted in a rodent subcutaneous model for 8 weeks. In the bone compartment a more intense alkaline phosphatase staining was observed with higher bone density as shown by lCT, when the scaffold contained osteoblasts. A thin mineralized cementum- like tissue was deposited on the dentin surface for the groups with multiple PDL cell sheets (as observed by H&E and Azan staining). These groups showed a better attachment of PDL-like tissues onto the dentin block compared with the scaffold without cell sheets. Immunohistochemistry revealed the presence of cementum protein 1 (CEMP1), a specific marker for cementum, at the interface between PDL and the dentine blocks. These results demonstrated that the combination of multiple PDL cell sheets and a biphasic scaffold allows the simultaneous delivery of the cells necessary for in vivo regeneration of alveolar bone, periodontal ligament and cementum.
    View less >
    Journal Title
    Journal of Tissue Engineering and Regenerative Medicine
    Volume
    6
    Issue
    Suppl. 1
    DOI
    https://doi.org/10.1002/term.1586
    Subject
    Biomedical engineering
    Clinical sciences
    Periodontics
    Medical physiology
    Publication URI
    http://hdl.handle.net/10072/49784
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander