The human stress-activated protein kinase-interacting 1 gene encodes JNK-binding proteins.
Abstract
The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin1a, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin1 polyclonal antibody showed that full-length Sin1 and several smaller isoforms are widely expressed. Sin1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. ...
View more >The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin1a, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin1 polyclonal antibody showed that full-length Sin1 and several smaller isoforms are widely expressed. Sin1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. The Sin1a isoform could also form a complex with JNK in vivo. Despite localizing in distinct compartments within the cell, both Sin1 and Sin1a co-localized with JNK, suggesting that the Sin1 proteins could recruit JNK. Over-expression of full-length Sin1 inhibited the activation of JNK by UV-C in DG75 cells, as well as basal JNK-activity in HEK293 cells. These data suggest that the human Sin1 proteins may act as scaffold molecules in the regulation of signaling by JNK.
View less >
View more >The orthologous proteins of the stress-activated protein kinase-interacting 1 (Sin1) family have been implicated in several different signal transduction pathways. In this study, we have investigated the function of the full-length human Sin1 protein and a C-terminally truncated isoform, Sin1a, which is produced by alternative splicing. Immunoblot analysis using an anti-Sin1 polyclonal antibody showed that full-length Sin1 and several smaller isoforms are widely expressed. Sin1 was demonstrated to bind to c-Jun N-terminal kinase (JNK) in vitro and in vivo, while no interaction with p38- or ERK1/2-family MAPKs was observed. The Sin1a isoform could also form a complex with JNK in vivo. Despite localizing in distinct compartments within the cell, both Sin1 and Sin1a co-localized with JNK, suggesting that the Sin1 proteins could recruit JNK. Over-expression of full-length Sin1 inhibited the activation of JNK by UV-C in DG75 cells, as well as basal JNK-activity in HEK293 cells. These data suggest that the human Sin1 proteins may act as scaffold molecules in the regulation of signaling by JNK.
View less >
Journal Title
Cellular Signalling
Volume
17
Issue
6
Publisher URI
Copyright Statement
© 2002 Elsevier : Reproduced in accordance with the copyright policy of the publisher : This journal is available online - use hypertext links
Subject
Biochemistry and Cell Biology
Medical Physiology