Probabilistic subgroup identification using Bayesian finite mixture modelling: A case study in Parkinson's disease phenotype identification
Author(s)
White, Nicole
Johnson, Helen
Silburn, Peter
Mellick, George
Dissanayaka, Nadeeka
Mengersen, Kerrie
Griffith University Author(s)
Year published
2012
Metadata
Show full item recordAbstract
This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person's membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups ...
View more >This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person's membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson's disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson's Disease Rating Scale (UPDRS).
View less >
View more >This article explores the use of probabilistic classification, namely finite mixture modelling, for identification of complex disease phenotypes, given cross-sectional data. In particular, if focuses on posterior probabilities of subgroup membership, a standard output of finite mixture modelling, and how the quantification of uncertainty in these probabilities can lead to more detailed analyses. Using a Bayesian approach, we describe two practical uses of this uncertainty: (i) as a means of describing a person's membership to a single or multiple latent subgroups and (ii) as a means of describing identified subgroups by patient-centred covariates not included in model estimation. These proposed uses are demonstrated on a case study in Parkinson's disease (PD), where latent subgroups are identified using multiple symptoms from the Unified Parkinson's Disease Rating Scale (UPDRS).
View less >
Journal Title
Statistical Methods in Medical Research
Volume
21
Issue
6
Subject
Statistics
Neurology and neuromuscular diseases