• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A calcium phosphate coated biphasic scaffold for periodontal complex regeneration

    Author(s)
    Vaquette, C
    Costa, P
    Hamlet, S
    Reis, R
    Ivanovski, S
    Hutmacher, DW
    Griffith University Author(s)
    Hamlet, Stephen
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Periodontitis is a common infectious disease that results in the degradation of the supporting tissues around teeth, which if left untreated can lead to tooth loss in the later stages of the disease. We have developed a biphasic scaffold for simultaneous regeneration of the alveolar bone and the periodontal ligament (PDL). This study represents a step forward into the optimization of this scaffold by utilizing a fused deposition modeling scaffold coated by a calcium phosphate layer for the bone compartment whereas the periodontal compartment consisted of a melt electrospun scaffold onto which PDL cell sheets were ...
    View more >
    Periodontitis is a common infectious disease that results in the degradation of the supporting tissues around teeth, which if left untreated can lead to tooth loss in the later stages of the disease. We have developed a biphasic scaffold for simultaneous regeneration of the alveolar bone and the periodontal ligament (PDL). This study represents a step forward into the optimization of this scaffold by utilizing a fused deposition modeling scaffold coated by a calcium phosphate layer for the bone compartment whereas the periodontal compartment consisted of a melt electrospun scaffold onto which PDL cell sheets were placed. Both the in vitro and in vivo performances of this biphasic scaffold were evaluated and it was observed that the alkaline phosphatase activity was significantly higher for the CaP coated samples and that the coated scaffolds displayed higher mineralization volume than the non-coated group. The scaffolds were placed onto a dentin block and implanted in a rodent subcutaneous model for 8 weeks, and higher bone formation was observed for the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted the vascularisation of the cell sheets and a PDL-like tissue was observed at the dentine interface. This work demonstrates that the combination of cell sheet technology together with an osteoinductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.
    View less >
    Journal Title
    Journal of Tissue Engineering and Regenerative Medicine
    Volume
    6
    Issue
    Suppl. 1
    DOI
    https://doi.org/10.1002/term.1586
    Subject
    Biomedical engineering
    Clinical sciences
    Periodontics
    Medical physiology
    Publication URI
    http://hdl.handle.net/10072/49842
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander