• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Developing vaccines in the era of genomics: a decade of reverse vaccinology

    Thumbnail
    View/Open
    81755_1.pdf (2.453Mb)
    Author(s)
    Seib, KL
    Zhao, X
    Rappuoli, R
    Griffith University Author(s)
    Seib, Kate
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Vaccines have a significant impact on public health, and vaccinology in the era of genomics is taking advantage of new technologies to tackle diseases for which vaccine development has so far been unsuccessful. Almost all existing vaccines were developed based on traditional vaccinology methods, which relied on empirical screening of a few candidates at a time, based on known features of the pathogen. However, the ability to sequence a pathogen's genome provides access to its entire antigenic repertoire. As such, genomics has catalysed a shift in vaccine development towards sequence-based 'Reverse Vaccinology' approaches, ...
    View more >
    Vaccines have a significant impact on public health, and vaccinology in the era of genomics is taking advantage of new technologies to tackle diseases for which vaccine development has so far been unsuccessful. Almost all existing vaccines were developed based on traditional vaccinology methods, which relied on empirical screening of a few candidates at a time, based on known features of the pathogen. However, the ability to sequence a pathogen's genome provides access to its entire antigenic repertoire. As such, genomics has catalysed a shift in vaccine development towards sequence-based 'Reverse Vaccinology' approaches, which use high-throughput in silico screening of the entire genome of a pathogen to identify genes that encode proteins with the attributes of good vaccine targets. Furthermore, the increasing availability of genome sequences has led to the development and application of additional technologies to vaccine discovery, including comparative genomics, transcriptomics, proteomics, immunomics and structural genomics. Vaccine candidates identified from a pathogen's genome or proteome can then be expressed as recombinant proteins and tested in appropriate in vitro or in vivo models to assess immunogenicity and protection. The process of reverse vaccinology has been applied to several pathogens, including serogroup B Neisseria meningitidis, Streptococcus agalactiae, Streptococcus pyogenes, Streptococcus pneumoniae and pathogenic Escherichia coli, and has provided scores of new candidate antigens for preclinical and clinical investigation. As novel genome-based technologies continue to emerge, it is expected that new vaccines for unmet diseases will be within reach.
    View less >
    Journal Title
    Clinical Microbiology and Infection
    Volume
    18
    Issue
    Suppl. 5
    DOI
    https://doi.org/10.1111/j.1469-0691.2012.03939.x
    Copyright Statement
    © 2012 European Society of Clinical Microbiology and Infectious Diseases. This is the author-manuscript version of the paper. Reproduced in accordance with the copyright policy of the publisher. The definitive version is available at http://onlinelibrary.wiley.com/
    Subject
    Clinical sciences
    Medical bacteriology
    Publication URI
    http://hdl.handle.net/10072/50260
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander