• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • 125th Anniversary Review: The Role of Proteins in Beer Redox Stability

    Author(s)
    Wu, Ming J
    Rogers, Peter J
    Clarke, Frank M
    Griffith University Author(s)
    Clarke, Francis M.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Flavour stability is usually approached through inhibition of reactive oxygen species (ROS). It may be possible to suppress ROS, but never to entirely eliminate them in packaged beer. The role of proteins in ROS suppression seems to have been lost in the compliant acquiescence to supply haze-free bright beer. Proteomics allows beer polypeptides to be finely resolved, identified and correlated with beer quality and stability. This has already produced a broader view of what stabilizes beer foam. No doubt it could do the same for beer stability and the broader roles that proteins, such as LTP1, can have in redox reactions ...
    View more >
    Flavour stability is usually approached through inhibition of reactive oxygen species (ROS). It may be possible to suppress ROS, but never to entirely eliminate them in packaged beer. The role of proteins in ROS suppression seems to have been lost in the compliant acquiescence to supply haze-free bright beer. Proteomics allows beer polypeptides to be finely resolved, identified and correlated with beer quality and stability. This has already produced a broader view of what stabilizes beer foam. No doubt it could do the same for beer stability and the broader roles that proteins, such as LTP1, can have in redox reactions and free radical suppression. Cysteine oxidation and reversibility is central to cellular signalling in biological systems. Thiol chemistry is also integral to beer redox stability. We can, and should, extrapolate the recent biological findings to the simple pleasure of creating a high-quality beer.
    View less >
    Journal Title
    Journal of Institute of Brewing
    Volume
    118
    Issue
    1
    DOI
    https://doi.org/10.1002/jib.17
    Subject
    Chemical sciences
    Biological sciences
    Engineering
    Bioprocessing, bioproduction and bioproducts
    Publication URI
    http://hdl.handle.net/10072/50478
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander