Show simple item record

dc.contributor.authorHaselhorst, Thomasen_US
dc.contributor.authorWilson, Jennyen_US
dc.contributor.authorLiakatos, Angelaen_US
dc.contributor.authorKiefel, Miltonen_US
dc.contributor.authorDyason, Jeffreyen_US
dc.contributor.authorvon Itzstein, Marken_US
dc.contributor.editorRonald L. Schnaaren_US
dc.date.accessioned2017-05-03T11:05:38Z
dc.date.available2017-05-03T11:05:38Z
dc.date.issued2004en_US
dc.date.modified2012-02-10T03:01:13Z
dc.identifier.issn09596658en_US
dc.identifier.doi10.1093/glycob/cwh108en_US
dc.identifier.urihttp://hdl.handle.net/10072/5048
dc.description.abstractNuclear magnetic resonance (NMR) spectroscopy was used to investigate the transfer of sialic acid from a range of sialic acid donor compounds to acceptor molecules, catalyzed by Trypanosoma cruzi trans-sialidase (TcTS). We demonstrate here that NMR spectroscopy is a powerful tool to monitor the trans-sialidase enzyme reaction for a variety of donor and acceptor molecules. The hydrolysis or transfer reactions that are catalyzed by TcTS were also investigated using a range of N-acetylneuraminosyl-based donor substrates and asialo acceptor molecules. These studies showed that the synthetic N-acetylneuraminosyl donor 4-methylumbelliferyl -D-N-acetylneuraminide (MUN) is hydrolyzed by the enzyme 3-5 times faster than either the disaccharide Neu5Ac(2,3)Gal߱Me or the trisaccharide Neu5Ac(2,3)Lac߱Me. In the transfer reaction, we show that Neu5Ac(2,3)Lac߱Me is the most favorable substrate for TcTS and is a better substrate than the naturally-occurring N-acetylneuraminosyl donor 1-acid glycoprotein. In the case of MUN as the donor molecule, the transfer of Neu5Ac to different acceptors is significantly slower than when other N-acetylneuraminosyl donors are used. We hypothesize that when MUN is bound by the enzyme, the orientation and steric bulk of the umbelliferyl aglycon moiety may restrict the access for the correct positioning of an acceptor molecule. AutoDock studies support our hypothesis and show that the umbelliferyl aglycon moiety undergoes a strong pi-stacking interaction with Trp-312. The binding properties of TcTS towards acceptor (lactose) and donor substrate (Neu5Ac) molecules have also been investigated using saturation transfer difference (STD) NMR experiments. These experiments, taken together with other published data, have clearly demonstrated that lactose in the absence of other coligands does not bind to the TcTS active site or other binding domains. However, in the presence of the sialic acid donor, lactose (an asialo acceptor) was observed by NMR spectroscopy to interact with the enzyme's active site. The association of the asialo acceptor with the active site is an absolute requirement for the transfer reaction to proceed.en_US
dc.description.peerreviewedYesen_US
dc.description.publicationstatusYesen_US
dc.format.extent439878 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglishen_US
dc.language.isoen_US
dc.publisherOxford University Pressen_US
dc.publisher.placeUSAen_US
dc.publisher.urihttp://glycob.oxfordjournals.org/en_US
dc.relation.ispartofpagefrom895en_US
dc.relation.ispartofpageto907en_US
dc.relation.ispartofissue10en_US
dc.relation.ispartofjournalGlycobiologyen_US
dc.relation.ispartofvolume14en_US
dc.subject.fieldofresearchcode250104en_US
dc.subject.fieldofresearchcode250302en_US
dc.titleNMR spectroscopic and molecular modeling investigations of the trans-sialidase from Trypanosoma cruzi.en_US
dc.typeJournal articleen_US
dc.type.descriptionC1 - Peer Reviewed (HERDC)en_US
dc.type.codeC - Journal Articlesen_US
dcterms.licensehttp://creativecommons.org/licenses/by/3.0/en_US
gro.rights.copyrightCopyright 2004 authors.This is an open access paper. http://creativecommons.org/licenses/by/3.0/ license that permits unrestricted use, provided that the paper is properly attributed.en_US
gro.date.issued2004
gro.hasfulltextFull Text


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record