• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Barcoding Sponges: An Overview Based on Comprehensive Sampling

    Thumbnail
    View/Open
    VargasPUB489.PDF (286.2Kb)
    Author(s)
    Vargas, Sergio
    Schuster, Astrid
    Sacher, Katharina
    Buettner, Gabrielle
    Schaetzle, Simone
    Laeuchli, Benjamin
    Hall, Kathryn
    Hooper, John NA
    Erpenbeck, Dirk
    Woerheide, Gert
    Griffith University Author(s)
    Hooper, John N.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Background Phylum Porifera includes ~8,500 valid species distributed world-wide in aquatic ecosystems ranging from ephemeral fresh-water bodies to coastal environments and the deep-sea. The taxonomy and systematics of sponges is complicated, and morphological identification can be both time consuming and erroneous due to phenotypic convergence and secondary losses, etc. DNA barcoding can provide sponge biologists with a simple and rapid method for the identification of samples of unknown taxonomic membership. The Sponge Barcoding Project (www.spongebarcoding.org), the first initiative to barcode a non-bilaterian metazoan ...
    View more >
    Background Phylum Porifera includes ~8,500 valid species distributed world-wide in aquatic ecosystems ranging from ephemeral fresh-water bodies to coastal environments and the deep-sea. The taxonomy and systematics of sponges is complicated, and morphological identification can be both time consuming and erroneous due to phenotypic convergence and secondary losses, etc. DNA barcoding can provide sponge biologists with a simple and rapid method for the identification of samples of unknown taxonomic membership. The Sponge Barcoding Project (www.spongebarcoding.org), the first initiative to barcode a non-bilaterian metazoan phylum, aims to provide a comprehensive DNA barcode database for Phylum Porifera. Methodology/Principal Findings ~7,400 sponge specimens have been extracted, and amplification of the standard COI barcoding fragment has been attempted for approximately 3,300 museum samples with ~25% mean amplification success. Based on this comprehensive sampling, we present the first report on the workflow and progress of the sponge barcoding project, and discuss some common pitfalls inherent to the barcoding of sponges. Conclusion A DNA-barcoding workflow capable of processing potentially large sponge collections has been developed and is routinely used for the Sponge Barcoding Project with success. Sponge specific problems such as the frequent co-amplification of non-target organisms have been detected and potential solutions are currently under development. The initial success of this innovative project have already demonstrated considerable refinement of sponge systematics, evaluating morphometric character importance, geographic phenotypic variability, and the utility of the standard barcoding fragment for Porifera (despite its conserved evolution within this basal metazoan phylum).
    View less >
    Journal Title
    PloS One
    Volume
    7
    Issue
    7
    DOI
    https://doi.org/10.1371/journal.pone.0039345
    Copyright Statement
    © 2012 Vargas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    Subject
    Biologically Active Molecules
    Publication URI
    http://hdl.handle.net/10072/50502
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander