• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Comparison of Mechanical Deflection and Maximum Stress of 3C SiC- and Si-Based Pressure Sensor Diaphragms for Extreme Environment

    Thumbnail
    View/Open
    83297_1.pdf (894.7Kb)
    Author(s)
    Marsi, Noraini
    Majlis, Burhanuddin Yeop
    Hamzah, Azrul Azlan
    Mohd-Yasin, Faisal
    Griffith University Author(s)
    Mohd-Yasin, Faisal
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    The design of a capacitive-sensing pressure sensor for extreme environment is proposed in this project. The movable diaphragm (top plate) is made of either cubic silicon carbide (3C-SiC) or Silicon (Si), while the fix diaphragm (bottom plate) is made of Si. This paper specifically compares the mechanical performance of the movable diaphragm utilizing both materials. Two important parameters associated with the behavior of the diaphragm are examined, namely the maximum deflection and maximum stress, and they are simulated at a pressure of 0-100 MPa, and at temperature of 27-1000 î The graphs of maximum deflection and stress ...
    View more >
    The design of a capacitive-sensing pressure sensor for extreme environment is proposed in this project. The movable diaphragm (top plate) is made of either cubic silicon carbide (3C-SiC) or Silicon (Si), while the fix diaphragm (bottom plate) is made of Si. This paper specifically compares the mechanical performance of the movable diaphragm utilizing both materials. Two important parameters associated with the behavior of the diaphragm are examined, namely the maximum deflection and maximum stress, and they are simulated at a pressure of 0-100 MPa, and at temperature of 27-1000 î The graphs of maximum deflection and stress vs pressures at different temperatures and thicknesses are plotted to summarize the data. SiC diaphragm has lower deflection and stress compares to Si diaphragm at different thicknesses, pressures and temperatures. Then, a linear regression analysis is performed to determine the R-square value. It is shown from these analyses that SiC diaphragm exhibits better linear behavior compares to Si diaphragm. Generally, this work proves that SiC is a better material over Si for the development of a pressure sensor at extreme environment.
    View less >
    Conference Title
    2012 10TH IEEE INTERNATIONAL CONFERENCE ON SEMICONDUCTOR ELECTRONICS (ICSE)
    DOI
    https://doi.org/10.1109/SMElec.2012.6417120
    Copyright Statement
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Microelectronics
    Microelectromechanical systems (MEMS)
    Publication URI
    http://hdl.handle.net/10072/50504
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander