• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Accessibility of pores in coal to methane and carbon dioxide

    Author(s)
    B. Melnichenko, Yuri
    He, Lilin
    Sakurovs, Richard
    L. Kholodenko, Arkady
    Blach, Tomasz
    Mastalerz, Maria
    Radlinski, Andrzej
    Cheng, Gang
    F.R. Mildner, David
    Griffith University Author(s)
    Blach, Tomasz P.
    Radlinski, Andrzej P.
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    Fluid-solid interactions in natural and engineered porous solids underlie a variety of technological processes, including geological storage of anthropogenic greenhouse gases, enhanced coal bed methane recovery, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity of pores, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid molecules migrate into and through the micro- and meso-porous media, adsorb and ultimately react with the solid surfaces. Due to the high penetration power and relatively short wavelength of neutrons, small-angle ...
    View more >
    Fluid-solid interactions in natural and engineered porous solids underlie a variety of technological processes, including geological storage of anthropogenic greenhouse gases, enhanced coal bed methane recovery, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity of pores, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid molecules migrate into and through the micro- and meso-porous media, adsorb and ultimately react with the solid surfaces. Due to the high penetration power and relatively short wavelength of neutrons, small-angle neutron scattering (SANS) as well as ultra small-angle scattering (USANS) techniques are ideally suited for assessing the phase behavior of confined fluids under pressure as well as for evaluating the total porosity in engineered and natural porous systems including coal. Here we demonstrate that SANS and USANS can be also used for determining the fraction of the pore volume that is actually accessible to fluids as a function of pore sizes and study the fraction of inaccessible pores as a function of pore size in three coals from the Illinois Basin (USA) and Bowen Basin (Australia). Experiments were performed at CO 2 and methane pressures up to 780 bar, including pressures corresponding to zero average contrast condition (ZAC), which is the pressure where no scattering from the accessible pores occurs. Scattering curves at the ZAC were compared with the scattering from same coals under vacuum and analysed using a newly developed approach that shows that the volume fraction of accessible pores in these coals varies between ~90% in the macropore region to ~30% in the mesopore region and the variation is distinctive for each of the examined coals. The developed methodology may be also applied for assessing the volume of accessible pores in other natural underground formations of interest for CO 2 sequestration, such as saline aquifers as well as for estimating closed porosity in engineered porous solids of technological importance
    View less >
    Journal Title
    Fuel
    Volume
    91
    Issue
    1
    DOI
    https://doi.org/10.1016/j.fuel.2011.06.026
    Subject
    Physical Sciences not elsewhere classified
    Physical Chemistry (incl. Structural)
    Chemical Engineering
    Mechanical Engineering
    Publication URI
    http://hdl.handle.net/10072/51386
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander