• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Analysis of Human Fibroblasts by Atomic Force Microscopy

    Author(s)
    Bushell, GR
    Cahill, C
    Myhra, S
    Watson, GS
    Griffith University Author(s)
    Myhra, Sverre
    Cahill, Colm
    Bushell, Gillian R.
    Watson, Gregory S.
    Year published
    2004
    Metadata
    Show full item record
    Abstract
    The force-sensing members of the large family of scanning probe microscopies have become important tools during the past decade for visualizing, characterizing, and manipulating objects and processes on the meso- and nanoscale level. The atomic force microscope (AFM), in particular, has had an impact in the life sciences. In cell science, the pioneering work with AFM was conducted in the early 1990s (1-3). The methodologies have now reached a stage of relative maturity (4). The principal merit of the AFM is as a nonintrusive local probe of live cells and their dynamics in the biofluid environment. As well as offering high ...
    View more >
    The force-sensing members of the large family of scanning probe microscopies have become important tools during the past decade for visualizing, characterizing, and manipulating objects and processes on the meso- and nanoscale level. The atomic force microscope (AFM), in particular, has had an impact in the life sciences. In cell science, the pioneering work with AFM was conducted in the early 1990s (1-3). The methodologies have now reached a stage of relative maturity (4). The principal merit of the AFM is as a nonintrusive local probe of live cells and their dynamics in the biofluid environment. As well as offering high spatial resolution imaging in one or more operational modes, the AFM can deliver characterization of mechanical properties and local chemistry through operation in the force-vs-distance (F-d) mode (e.g., ref. 5). The lateral resolution delivered by the AFM will in most cases, and especially for soft materials, be inferior to that obtained by electron-optical techniques, but the z-resolution is routinely in the nanometer range with a depth of focus equal to the dynamic range of the z-stage travel. The instrument may be operated in one of several modes, of which the most common ones are as follows: the contact mode, using a soft lever in which contours of constant strength of interaction are traced out; the intermittent-contact mode, in which a relatively stiff lever is vibrated at a frequency near that of a free-running resonance and in which contours of constant decrement of the free-running amplitude or a constant phase shift are mapped; and the F-d mode, in which the local stiffness of interaction between tip and specimen is determined over a range of applied force (lever deflection and z-stage travel being the two measurable variables).
    View less >
    Book Title
    Atomic Force Microscopy: Biomedical Methods and Applications
    DOI
    https://doi.org/10.1385/1-59259-647-9:53
    Subject
    Other Chemical Sciences
    Biochemistry and Cell Biology
    Publication URI
    http://hdl.handle.net/10072/514
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander