Show simple item record

dc.contributor.authorZhao, Xiaojun
dc.contributor.authorLi, Lin
dc.contributor.authorLu, Junwei
dc.contributor.authorCheng, Zhiguang
dc.contributor.authorLu, Tiebing
dc.date.accessioned2017-05-03T12:14:27Z
dc.date.available2017-05-03T12:14:27Z
dc.date.issued2012
dc.date.modified2013-07-17T22:07:24Z
dc.identifier.issn0332-1649
dc.identifier.doi10.1108/03321641211200554
dc.identifier.urihttp://hdl.handle.net/10072/51423
dc.description.abstractPurpose - This paper aims to introduce the decomposed harmonic balance finite element method (HBFEM) to decrease the memory requirement in large-scale computation of the DC-biasing magnetic field. Harmonic analysis of the flux density and flux distribution was carried out to investigate the DC biased problem in a laminated core model (LCM). Design/methodology/approach - Based on the DC bias test on a LCM, the decomposed HBFEM is applied to accurately calculate the DC-biasing magnetic field. External electric circuits are coupled with the magnetic field in the harmonic domain. The reluctivity matrix is decomposed and the block Gauss-Seidel algorithm solves each harmonic solution of magnetic field and exciting current sequentially. Findings - The calculated exciting currents and flux density are compared with that obtained from measurement and time domain finite element analysis, respectively, which demonstrates consistency. The DC bias leads to the significant saturation of the magnetic core and serious distortion of the exciting current. The flux density varies nonlinearly with DC bias excitation. Research limitations/implications - The harmonic balance method is only applicable in solving the steady state magnetic field. Future improvements in the method are necessary in order to manage the hysteresis effects in magnetic material. Originality/value - The proposed method to solve the DC biased problem significantly reduces the memory requirement compared to the conventional HBFEM. The decomposed harmonic balance equations are solved efficiently by the block Gauss-Seidel algorithm combined with the relaxation iterative scheme. An investigation on DC bias phenomena is carried out through the harmonic solution of the magnetic field. The decomposed HBFEM can also be applied to solve 3-D DC-biasing magnetic field and eddy current nonlinear problems in a practical power transformer.
dc.description.peerreviewedYes
dc.description.publicationstatusYes
dc.format.extent574711 bytes
dc.format.mimetypeapplication/pdf
dc.languageEnglish
dc.language.isoeng
dc.publisherEmerald Group Publishing
dc.publisher.placeUnited Kingdom
dc.relation.ispartofstudentpublicationN
dc.relation.ispartofpagefrom498
dc.relation.ispartofpageto513
dc.relation.ispartofissue2
dc.relation.ispartofjournalCOMPEL
dc.relation.ispartofvolume31
dc.rights.retentionY
dc.subject.fieldofresearchApplied mathematics
dc.subject.fieldofresearchcode4901
dc.titleAnalysis of the saturated electromagnetic devices under DC bias condition by the decomposed harmonic balance finite element method
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
gro.rights.copyright© 2012 Emerald. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
gro.date.issued2012
gro.hasfulltextFull Text
gro.griffith.authorLu, Junwei


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record