• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes

    Author(s)
    Wang, Shaobin
    Ng, Choon Wei
    Wang, Wentai
    Li, Qin
    Hao, Zhengping
    Griffith University Author(s)
    Li, Qin
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    A multiwalled carbon nanotube (MWCNT) was used as an adsorbent for removal of a cationic dye (methylene blue, MB) and acid dye (acid red 183, AR183) from aqueous solution in single and binary dye systems. Characterization of the MWCNT and MWCNT-dye systems were performed using several techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TG-DTA), zeta potential and elemental analysis. Adsorption tests showed that the MWCNT presented higher adsorption of MB than AR183 in single and binary dye systems, revealing that p-p stacking is the main driving force responsible ...
    View more >
    A multiwalled carbon nanotube (MWCNT) was used as an adsorbent for removal of a cationic dye (methylene blue, MB) and acid dye (acid red 183, AR183) from aqueous solution in single and binary dye systems. Characterization of the MWCNT and MWCNT-dye systems were performed using several techniques such as Fourier transform infrared spectroscopy (FTIR), thermogravimetric-differential thermal analysis (TG-DTA), zeta potential and elemental analysis. Adsorption tests showed that the MWCNT presented higher adsorption of MB than AR183 in single and binary dye systems, revealing that p-p stacking is the main driving force responsible for the dye-MWCNT interaction. In single dye systems, the MWCNT presented the maximum adsorption capacities of MB and AR183 at 59.7 and 45.2 mg/g, respectively. In a binary dye system, a synergistic effect due to electronic attraction between MB and AR183 was found at low AR183 concentration (10 mg/L), which promotes the adsorption of both dyes on the MWCNT. However, MB adsorption could be reduced at higher AR183 concentration (>20 mg/L) due to a strong electrostatic attraction between MWCNT-AR183.
    View less >
    Journal Title
    Chemical Engineering Journal
    Volume
    197
    DOI
    https://doi.org/10.1016/j.cej.2012.05.008
    Subject
    Chemical engineering
    Water treatment processes
    Civil engineering
    Environmental engineering
    Publication URI
    http://hdl.handle.net/10072/51501
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander