• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Application of multivariate curve resolution method in the quantitative monitoring transformation of salvianolic acid A using online UV spectroscopy and mass spectroscopy

    Author(s)
    Zheng, Xintian
    Gong, Xingchu
    Li, Qin
    Qu, Haibin
    Griffith University Author(s)
    Li, Qin
    Year published
    2012
    Metadata
    Show full item record
    Abstract
    This work presents an exploratory study of monitoring the transformation process of salvianolic acid A (SAA) using an online UV spectroscopic analysis system. A chemometrics approach, based on multivariate curve resolution of spectrophotometric matrix, was applied to resolve the concentration and spectra profiles of reactant species and to evaluate the kinetic profile. Kinetic runs have been developed at temperatures ranging from 25 to 90 àand pH values ranging from 2.5 to 10 in order to investigate the effects of these two variables during the transformation process of SAA. The degradation reaction of SAA was considered as ...
    View more >
    This work presents an exploratory study of monitoring the transformation process of salvianolic acid A (SAA) using an online UV spectroscopic analysis system. A chemometrics approach, based on multivariate curve resolution of spectrophotometric matrix, was applied to resolve the concentration and spectra profiles of reactant species and to evaluate the kinetic profile. Kinetic runs have been developed at temperatures ranging from 25 to 90 àand pH values ranging from 2.5 to 10 in order to investigate the effects of these two variables during the transformation process of SAA. The degradation reaction of SAA was considered as first-order and the degradation kinetic constant of SAA increases when temperature increases. It was also found that SAA transforms rapidly when pH is higher than 7, but remains stable when pH is lower than 6.5. Two transformation products were auxiliarily identified by direct mass spectrometric analysis using Mass Work software. Our results suggest that the manufacturing process of Chinese medicine preparations with SAA as the main bioactive compound should not be operated at high temperature and high pH.
    View less >
    Journal Title
    Industrial and Engineering Chemistry Research
    Volume
    51
    Issue
    8
    DOI
    https://doi.org/10.1021/ie201536y
    Copyright Statement
    Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.
    Subject
    Chemical sciences
    Analytical spectrometry
    Engineering
    Chemical engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/51521
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander