• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Quasi-random Sampling Approach to Image Retrieval

    Thumbnail
    View/Open
    85928_1.pdf (374.4Kb)
    Author(s)
    Zhou, J
    Robles-Kelly, A
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2008
    Metadata
    Show full item record
    Abstract
    In this paper, we present a novel approach to contents-based image retrieval. The method hinges in the use of quasi-random sampling to retrieve those images in a database which are related to a query image provided by the user. Departing from random sampling theory, we make use of the EM algorithm so as to organize the images in the database into compact clusters that can then be used for stratified random sampling. For the purposes of retrieval, we use the similarity between the query and the clustered images to govern the sampling process within clusters. In this way, the sampling can be viewed as a stratified sampling one ...
    View more >
    In this paper, we present a novel approach to contents-based image retrieval. The method hinges in the use of quasi-random sampling to retrieve those images in a database which are related to a query image provided by the user. Departing from random sampling theory, we make use of the EM algorithm so as to organize the images in the database into compact clusters that can then be used for stratified random sampling. For the purposes of retrieval, we use the similarity between the query and the clustered images to govern the sampling process within clusters. In this way, the sampling can be viewed as a stratified sampling one which is random at the cluster level and takes into account the intra-cluster structure of the dataset. This approach leads to a measure of statistical confidence that relates to the theoretical hard-limit of the retrieval performance. We show results on the Oxford Flowers dataset.
    View less >
    Conference Title
    26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
    DOI
    https://doi.org/10.1109/CVPR.2008.4587387
    Copyright Statement
    © 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Computer vision
    Publication URI
    http://hdl.handle.net/10072/51672
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander