• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Automatic Detection of Defective Zebrafish Embryos via Shape Analysis

    Thumbnail
    View/Open
    85921_1.pdf (1.329Mb)
    Author(s)
    Zhao, Haifeng
    Zhou, Jun
    Robles-Kelly, Antonio
    Lu, Jingfeng
    Yang, Jing-Yu
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2009
    Metadata
    Show full item record
    Abstract
    In this paper, we present a graph-based approach to automatically detect defective zebrafish embryos. Here, the zebrafish is segmented from the background using a texture descriptor and morphological operations. In this way, we can represent the embryo shape as a graph, for which we propose a vectorisation method to recover clique histogram vectors for classification. The clique histogram represents the distribution of one vertex with respect to its adjacent vertices. This treatment permits the use of a codebook approach to represent the graph in terms of a set of codewords that can be used for purposes of support vector ...
    View more >
    In this paper, we present a graph-based approach to automatically detect defective zebrafish embryos. Here, the zebrafish is segmented from the background using a texture descriptor and morphological operations. In this way, we can represent the embryo shape as a graph, for which we propose a vectorisation method to recover clique histogram vectors for classification. The clique histogram represents the distribution of one vertex with respect to its adjacent vertices. This treatment permits the use of a codebook approach to represent the graph in terms of a set of codewords that can be used for purposes of support vector machine classification. The experimental results show that the method is not only effective but also robust to occlusions and shape variations. represent the embryo shape as a graph, for which we propose a vectorisation method to recover clique histogram vectors for classification. The clique histogram represents the distribution of one vertex with respect to its adjacent vertices. This treatment permits the use of a codebook approach to represent the graph in terms of a set of codewords that can be used for purposes of support vector machine classification. The experimental results show that the method is not only effective but also robust to occlusions and shape variations.
    View less >
    Conference Title
    2009 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2009)
    DOI
    https://doi.org/10.1109/DICTA.2009.76
    Copyright Statement
    © 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Computer vision
    Publication URI
    http://hdl.handle.net/10072/51692
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander